

DEFCON 2007
David Hulton <david@toorcon.org>

Chairman, ToorCon
Security R&D, Pico Computing, Inc.
Researcher, The OpenCiphers Project

Faster PwninG A ssured:
New Adventures with
FPGAs

DEFCON 2007 2007 © The OpenCiphers Project

Overview

 FPGAs – Quick Intro
 New Cracking Tools! (Since ShmooCon)

 BTCrack – Bluetooth Authentication
 WinZipCrack – WinZip AES Encryption

 New to 2007! (Since Last Defcon)
 VileFault – Mac OS-X FileVault
 jc-aircrack – WEP (FMS)
 Works in Progress

 Conclusions

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Quick Intro
 Chip with a ton of general purpose logic

 ANDs, ORs, XORs
 FlipFlops (Registers)
 BlockRAM (Cache)
 DSP48’s (ALUs)
 DCMs (Clock Multipliers)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs (448)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices (10,752)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs (8)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs (72)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s (48)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s
 Programmable Routing Matrix
 (~18 layers)

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Pairing bluetooth devices is similar to wifi
authentication

 Why not crack the bluetooth PIN?
 Uses a modified version of SAFER+
 SAFER+ inherently runs much faster in

hardware
 Attack originally explained and published by

Yaniv Shaked and Avishai Wool
 Thierry Zoller originally demonstrated his

implementation at hack.lu

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 How it works
 Capture a bluetooth authentication

(sorry, requires an expensive protocol analyzer)
 This is what you'll see

Master
in_rand
m_comb_key

m_au_rand

m_sres

Slave
master sends a random nonce

s_comb_key sides create key based on the pin
master sends random number

s_res slave hashes with E1 and replies
s_au_rand slave sends random number

master hashes with E1 and replies

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Just try a PIN and if the hashes match the
capture, it is correct

 Extremely small keyspace since most devices just
use numeric PINs (1016)

 My implementation is command line and should
work on all systems with or without FPGA(s)

DEFCON 2007 2007 © The OpenCiphers Project

 FPGA Implementation
 Requires implementations of E21, E22, and E1 which

all rely on SAFER+
 Uses 16-stage pipeline version of SAFER+ which feeds

back into itsself after each stage
 To explain, here's some psuedocode

Bluetooth PIN Cracking

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+
16 PINs16 PINs

E22

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Output loops back and SAFER+ now does
E21 for the Master

16 clock cycles laterE21

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then does the second E21 for the Slave
and combines the keys to create the link key

16 clock cycles laterE21

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Slave

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Slave

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Master

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Master

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then checks all of the sres values to see if any match
while the process starts over

16 clock cycles laterE22

CompareSRES

Stop
N Y

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 If the cracker stops the computer reads back
the last generated PIN from the pin generator to
determine what the valid PIN was

 The last generated PIN – 16 should be the
cracked PIN

 I built a commandline version
 Thierry Zoller integrated support into BTCrack
 I added some hollywood FX !

DEFCON 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

btpincrack
3.6GHz P4 ~40,000/sec

BTCrack
3.6GHz P4 ~100,000/sec

0.24 secs to crack 4 digit
42 min to crack 8 digit

FPGA

btpincrack
LX25 ~7,000,000/sec
15 Cluster ~105,000,000/sec
LX50 ~10,000,000/sec

0.001 secs to crack 4 digit
10 secs to crack 8 digit

Demo

DEFCON 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Somewhat proprietary standard
 No open source code available (until now!)
 Format

 Uses the standard ZIP format
 Adds a new compression type (99)
 Uses PBKDF2 (1000 iterations) for key derivation
 Individual files can be encrypted inside the ZIP file
 Supports 128/192/256-bit key lengths
 Uses a 16-bit verification value to verify passwords
 Otherwise you verify by using the checksum
 Uses a salt (sorry, can't do a dictionary attack!)

DEFCON 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Cracking algorithm
 Scan through ZIP file until you find the encrypted file
 Get the 16-bit password verification value
 Hash a password with PBKDF2 and see if the

verification value matches
 No – Try next password
 Yes – Decrypt file and see if checksum matches

 No – Try next password
 Yes – Password found!

DEFCON 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Uses the same PBKDF2 core as the WPA and
FileVault cracking code

 Requires extra iterations for longer key lengths
 Tool takes a ZIP file, encrypted file name, and

dictionary file as input

DEFCON 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

winzipcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

winzipcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 “FileVault secures your home directory by
encrypting its entire contents using the
Advanced Encryption Standard with 128-
bit keys. This high-performance algorithm
automatically encrypts and decrypts in
real time, so you don’t even know it’s
happening.”

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 We wanted to know what was happening

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Stores the home directory in a DMG file
 DMG is mounted when you login
 hdi framework handles everything
 Blocks get encrypted in 4kByte “chunks” AES-

128, CBC mode
 Keys are encrypted (“wrapped”) in header of

disk image
 Wrapping of keys done using 3DES-EDE
 Two different header formats (v1, v2)
 Version 2 header: support for asymmetrically

(RSA) encrypted header

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Apple's FileVault
 Uses PBKDF2 for the password hashing
 Modified version of the WPA attack can be used

to attack FileVault
 Just modified the WPA core to 1000 iterations

instead of 4096
 Worked with Jacob Appelbaum & Ralf-Philip

Weinmann to reverse engineer the FileVault
format and encryption

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Login password used to derive key for
unwrapping
 PBKDF2 (PKCS#5 v2.0), 1000 iterations

 Crypto parts implemented in CDSA/CSSM
 DiskImages has own AES implementation,

pulls in SHA-1 from OpenSSL dylib

 “Apple custom” key wrapping loosely
according to RFC 2630 in Apple's CDSA
provider (open source)

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 vfdecrypt (Ralf Philip-Weinmann & Jacob Appelbaum)
 Will use the same method with a correct password to

decrypt the DMG file and output an unencrypted DMG
file

 Result can be mounted on any system without a
password

 vfcrack (me!)
 Unwrap the header
 Use header to run PBKDF2 with possible passphrases
 Use PBKDF2 hash to try and decrypt the AES key, if it

doesn't work, try next passphrase
 With the AES key decrypt the beginning of the DMG file

and verify the first sector is correct (only needed with
v2)

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Other attacks
 Swap

 The key can get paged to disk (whoops!)
 Encrypted swap isn't enabled by default

 Hibernation
 You can extract the FileVault key from a hibernation file
 Ring-0 code can find the key in memory

 Weakest Link
 The password used for the FileVault image is the same as

your login password
 Salted SHA-1 is much faster to crack than PBKDF2 (1

iteration vs 1000)
 The RSA key is easier to crack than PBKDF2

DEFCON 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

vfcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

vfcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

DEFCON 2007 2007 © The OpenCiphers Project

jc-aircrack

 Johnny Cache added FPGA support to jc-aircrack
 Uses all of the standard aircrack statistical methods
 Helps with smaller capture files
 You can offload brute forcing the lower key byte

possibilities to the FPGA
 Uses a new common FPGA WEP cracking library

 Performance
 Performance will vary depending on capture file
 Should typically get about 30x speed increase when

brute forcing

Demo

DEFCON 2007 2007 © The OpenCiphers Project

Works in Progress

 GSM A5/1
 Real working open-source implementation
 We can capture GSM packets
 We can break A5/1 (using a few different methods)
 Check out our talk at the CCCamp

DEFCON 2007 2007 © The OpenCiphers Project

Conclusion

 Get an FPGA and start cracking!
 Make use if your hardware to break crypto
 <64-bit just doesn't cut it anymore
 Choose bad passwords (please!)

DEFCON 2007 2007 © The OpenCiphers Project

Hardware Used

 Pico E-12
 Compact Flash
 64 MB Flash
 128 MB SDRAM
 Gigabit Ethernet
 Optional 450MHz PowerPC 405

DEFCON 2007 2007 © The OpenCiphers Project

Hardware Used

 Pico E-12 Super Cluster
 15 - E-12’s
 2 - 2.8GHz Pentium 4’s
 2 - 120GB HDD
 2 - DVD-RW
 550 Watt Power Supply

DEFCON 2007 2007 © The OpenCiphers Project

Future Hardware

 Pico E-16
 ExpressCard 34

 Works in MacBook Pros
 2.5Gbps full-duplex

 Virtex-5 LX50 (~2x faster)
 32MB SRAM
 External ExpressCard Chip
 Made for Crypto Cracking
 More affordable

DEFCON 2007 2007 © The OpenCiphers Project

Thanks

 Johny Cache (airbase/jc-wepcrack/jc-aircrack)
 Jacob Appelbaum & Ralf-Philip Weinmann

(FileVault)
 Thierry Zoller & Eric Sesterhenn (BTCrack)
 Viewers like you

DEFCON 2007 2007 © The OpenCiphers Project

Questions?

 David Hulton
 david@toorcon.org
 http://openciphers.sf.net
 http://www.picocomputing.com
 http://www.toorcon.org
 http://www.802.11mercenary.net

