

DEFCON 2007
David Hulton <david@toorcon.org>

Chairman, ToorCon
Security R&D, Pico Computing, Inc.
Researcher, The OpenCiphers Project

Faster PwninG A ssured:
New Adventures with
FPGAs

DEFCON 2007 2007 © The OpenCiphers Project

Overview

 FPGAs – Quick Intro
 New Cracking Tools! (Since ShmooCon)

 BTCrack – Bluetooth Authentication
 WinZipCrack – WinZip AES Encryption

 New to 2007! (Since Last Defcon)
 VileFault – Mac OS-X FileVault
 jc-aircrack – WEP (FMS)
 Works in Progress

 Conclusions

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Quick Intro
 Chip with a ton of general purpose logic

 ANDs, ORs, XORs
 FlipFlops (Registers)
 BlockRAM (Cache)
 DSP48’s (ALUs)
 DCMs (Clock Multipliers)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs (448)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices (10,752)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs (8)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs (72)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s (48)

DEFCON 2007 2007 © The OpenCiphers Project

FPGAs

 Virtex-4 LX25
 IOBs
 Slices
 DCMs
 BlockRAMs
 DSP48s
 Programmable Routing Matrix
 (~18 layers)

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Pairing bluetooth devices is similar to wifi
authentication

 Why not crack the bluetooth PIN?
 Uses a modified version of SAFER+
 SAFER+ inherently runs much faster in

hardware
 Attack originally explained and published by

Yaniv Shaked and Avishai Wool
 Thierry Zoller originally demonstrated his

implementation at hack.lu

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 How it works
 Capture a bluetooth authentication

(sorry, requires an expensive protocol analyzer)
 This is what you'll see

Master
in_rand
m_comb_key

m_au_rand

m_sres

Slave
master sends a random nonce

s_comb_key sides create key based on the pin
master sends random number

s_res slave hashes with E1 and replies
s_au_rand slave sends random number

master hashes with E1 and replies

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 Just try a PIN and if the hashes match the
capture, it is correct

 Extremely small keyspace since most devices just
use numeric PINs (1016)

 My implementation is command line and should
work on all systems with or without FPGA(s)

DEFCON 2007 2007 © The OpenCiphers Project

 FPGA Implementation
 Requires implementations of E21, E22, and E1 which

all rely on SAFER+
 Uses 16-stage pipeline version of SAFER+ which feeds

back into itsself after each stage
 To explain, here's some psuedocode

Bluetooth PIN Cracking

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

for(pin = 0; ; pin++) {
Kinit = E22(pin, s_bd_addr, in_rand); // determine initialization key

m_comb_key ^= Kinit; // decrypt comb_keys
s_comb_key ^= Kinit;

m_lk = E21(m_comb_key, m_bd_addr); // determine link key
s_lk = E21(s_comb_key, s_bd_addr);
lk = m_lk ^ s_lk;

m_sres_t = E1(lk, s_au_rand, m_bd_addr); // verify authentication
s_sres_t = E1(lk, m_au_rand, s_bd_addr);

if(m_sres_t == m_sres && s_sres_t == s_sres)
found!

}

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+
16 PINs16 PINs

E22

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Output loops back and SAFER+ now does
E21 for the Master

16 clock cycles laterE21

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then does the second E21 for the Slave
and combines the keys to create the link key

16 clock cycles laterE21

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Slave

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Slave

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the first part of E1 for the Master

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then the second part of E1 for the Master

16 clock cycles laterE1

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

PIN Gen SAFER+

Then checks all of the sres values to see if any match
while the process starts over

16 clock cycles laterE22

CompareSRES

Stop
N Y

DEFCON 2007 2007 © The OpenCiphers Project

Bluetooth PIN Cracking

 If the cracker stops the computer reads back
the last generated PIN from the pin generator to
determine what the valid PIN was

 The last generated PIN – 16 should be the
cracked PIN

 I built a commandline version
 Thierry Zoller integrated support into BTCrack
 I added some hollywood FX !

DEFCON 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

btpincrack
3.6GHz P4 ~40,000/sec

BTCrack
3.6GHz P4 ~100,000/sec

0.24 secs to crack 4 digit
42 min to crack 8 digit

FPGA

btpincrack
LX25 ~7,000,000/sec
15 Cluster ~105,000,000/sec
LX50 ~10,000,000/sec

0.001 secs to crack 4 digit
10 secs to crack 8 digit

Demo

DEFCON 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Somewhat proprietary standard
 No open source code available (until now!)
 Format

 Uses the standard ZIP format
 Adds a new compression type (99)
 Uses PBKDF2 (1000 iterations) for key derivation
 Individual files can be encrypted inside the ZIP file
 Supports 128/192/256-bit key lengths
 Uses a 16-bit verification value to verify passwords
 Otherwise you verify by using the checksum
 Uses a salt (sorry, can't do a dictionary attack!)

DEFCON 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Cracking algorithm
 Scan through ZIP file until you find the encrypted file
 Get the 16-bit password verification value
 Hash a password with PBKDF2 and see if the

verification value matches
 No – Try next password
 Yes – Decrypt file and see if checksum matches

 No – Try next password
 Yes – Password found!

DEFCON 2007 2007 © The OpenCiphers Project

WinZip AES Encryption

 Uses the same PBKDF2 core as the WPA and
FileVault cracking code

 Requires extra iterations for longer key lengths
 Tool takes a ZIP file, encrypted file name, and

dictionary file as input

DEFCON 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

winzipcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

winzipcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 “FileVault secures your home directory by
encrypting its entire contents using the
Advanced Encryption Standard with 128-
bit keys. This high-performance algorithm
automatically encrypts and decrypts in
real time, so you don’t even know it’s
happening.”

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 We wanted to know what was happening

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Stores the home directory in a DMG file
 DMG is mounted when you login
 hdi framework handles everything
 Blocks get encrypted in 4kByte “chunks” AES-

128, CBC mode
 Keys are encrypted (“wrapped”) in header of

disk image
 Wrapping of keys done using 3DES-EDE
 Two different header formats (v1, v2)
 Version 2 header: support for asymmetrically

(RSA) encrypted header

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Apple's FileVault
 Uses PBKDF2 for the password hashing
 Modified version of the WPA attack can be used

to attack FileVault
 Just modified the WPA core to 1000 iterations

instead of 4096
 Worked with Jacob Appelbaum & Ralf-Philip

Weinmann to reverse engineer the FileVault
format and encryption

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Login password used to derive key for
unwrapping
 PBKDF2 (PKCS#5 v2.0), 1000 iterations

 Crypto parts implemented in CDSA/CSSM
 DiskImages has own AES implementation,

pulls in SHA-1 from OpenSSL dylib

 “Apple custom” key wrapping loosely
according to RFC 2630 in Apple's CDSA
provider (open source)

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 vfdecrypt (Ralf Philip-Weinmann & Jacob Appelbaum)
 Will use the same method with a correct password to

decrypt the DMG file and output an unencrypted DMG
file

 Result can be mounted on any system without a
password

 vfcrack (me!)
 Unwrap the header
 Use header to run PBKDF2 with possible passphrases
 Use PBKDF2 hash to try and decrypt the AES key, if it

doesn't work, try next passphrase
 With the AES key decrypt the beginning of the DMG file

and verify the first sector is correct (only needed with
v2)

DEFCON 2007 2007 © The OpenCiphers Project

VileFault

 Other attacks
 Swap

 The key can get paged to disk (whoops!)
 Encrypted swap isn't enabled by default

 Hibernation
 You can extract the FileVault key from a hibernation file
 Ring-0 code can find the key in memory

 Weakest Link
 The password used for the FileVault image is the same as

your login password
 Salted SHA-1 is much faster to crack than PBKDF2 (1

iteration vs 1000)
 The RSA key is easier to crack than PBKDF2

DEFCON 2007 2007 © The OpenCiphers Project

Performance Comparison

PC

vfcrack
800MHz P3 ~100/sec
3.6GHz P4 ~180/sec
AMD Opteron ~200/sec
2.16GHz IntelDuo ~200/sec

FPGA

vfcrack
LX25 ~2,000/sec
LX50 ~6,000/sec
15 Cluster ~30,000/sec

Demo

DEFCON 2007 2007 © The OpenCiphers Project

jc-aircrack

 Johnny Cache added FPGA support to jc-aircrack
 Uses all of the standard aircrack statistical methods
 Helps with smaller capture files
 You can offload brute forcing the lower key byte

possibilities to the FPGA
 Uses a new common FPGA WEP cracking library

 Performance
 Performance will vary depending on capture file
 Should typically get about 30x speed increase when

brute forcing

Demo

DEFCON 2007 2007 © The OpenCiphers Project

Works in Progress

 GSM A5/1
 Real working open-source implementation
 We can capture GSM packets
 We can break A5/1 (using a few different methods)
 Check out our talk at the CCCamp

DEFCON 2007 2007 © The OpenCiphers Project

Conclusion

 Get an FPGA and start cracking!
 Make use if your hardware to break crypto
 <64-bit just doesn't cut it anymore
 Choose bad passwords (please!)

DEFCON 2007 2007 © The OpenCiphers Project

Hardware Used

 Pico E-12
 Compact Flash
 64 MB Flash
 128 MB SDRAM
 Gigabit Ethernet
 Optional 450MHz PowerPC 405

DEFCON 2007 2007 © The OpenCiphers Project

Hardware Used

 Pico E-12 Super Cluster
 15 - E-12’s
 2 - 2.8GHz Pentium 4’s
 2 - 120GB HDD
 2 - DVD-RW
 550 Watt Power Supply

DEFCON 2007 2007 © The OpenCiphers Project

Future Hardware

 Pico E-16
 ExpressCard 34

 Works in MacBook Pros
 2.5Gbps full-duplex

 Virtex-5 LX50 (~2x faster)
 32MB SRAM
 External ExpressCard Chip
 Made for Crypto Cracking
 More affordable

DEFCON 2007 2007 © The OpenCiphers Project

Thanks

 Johny Cache (airbase/jc-wepcrack/jc-aircrack)
 Jacob Appelbaum & Ralf-Philip Weinmann

(FileVault)
 Thierry Zoller & Eric Sesterhenn (BTCrack)
 Viewers like you

DEFCON 2007 2007 © The OpenCiphers Project

Questions?

 David Hulton
 david@toorcon.org
 http://openciphers.sf.net
 http://www.picocomputing.com
 http://www.toorcon.org
 http://www.802.11mercenary.net

