Privacy in DSRC connected vehicles

Defcon 21 – August 3, 2013
whoami

• BSEE, digital communications
• Many years as a network engineer
• Santa Clara University Law student
• Research assistant providing technical expertise on privacy audits and reviews
• Contracted by auto consortium to review privacy of proposed vehicle to vehicle safety network
Standard Disclaimer

IANAL (Yet)
But if you know anyone looking for summer interns....
Non-Standard Disclaimer

A current NDA covers some of my work here (but not very much)
The focus will be on published information and standards.
What is This Project?

- **DSRC**: Dedicated Short Range Communications
 - (Where “short” == 380m)
- Vehicle to Vehicle
- Vehicle to infrastructure
 - Not having to wait for a light on an empty street again.
 - Better traffic planning for better cities and roadways.
Why is It being Developed?

Safety
How the safety features work
Non-trivial Impact on Auto Deaths

- World Health Organization estimates 25% of vehicle deaths each year can be prevented.

- Fatigue and distracted driving accidents reduced.

- Blind Corners, fog and limited visibility accidents reduced.
Will This really Happen?

IT ALREADY IS
How Soon?

- Hardware is already being shipped.
- Software issues still entirely in the air.
- More is being done in software these days.
- The US Dept. of Transportation is considering mandating this for all new cars. (Decision to come later this year.)
- Has already deployed in trucks in Europe.
What is DSRC

• Basic safety messages sent out every 1/10 seconds.

• All message carry a standard glob: values for pre-defined vehicle trajectory and operational data.

• Cars process data and warn driver.

• Equipment integrated into vehicle
After Market Installation

A little cumbersome

Photo Credit: NIST

A little cumbersome
What DSRC is not

- CANbus
- OnStar (or any other remote service)
- (Direct) support for autonomous driving mechanisms.
Technical details
Radio protocol

- 5.9GHz reserved in US and Europe
- Signaling standard: IEEE 802.11p / 1609.4 / 1609.3
- Channels reserved for specific functions
- Protocol does not require source address for vehicles
- Recommendations include using certificates
- Privacy challenges at each layer

Photo Credit: NASA
Basic Safety Message

- Standard: SAE J2735
- ~50 fixed data elements
- “only” interface to radio (on this channel/band)
Parameters for effectiveness

• Density
• Benefit derived from other vehicles’ use
• Greater usage means greater effectiveness

• Confidence
• Most messages must be trustworthy
Validity?

- All messages are cryptographically signed
- Signing certificates issued by central authority
- Issued based on system fingerprint
- Revocation for “malfuctioning” equipment
- System should invalidate itself if internal checks fail
Certificates

- Limited time use to prevent tracking
- Reused?
- Periodically refreshed (and malefactors reported)
- How often?
Privacy?
MAC Layer

- Changeable source (for vehicles) / no destination
- Unrouteable! (mostly)
- No significant privacy concern as is.
- **Any** algorithm to make network routeable will make vehicles trackable.
- “Temporary” ID could become persistent with bad app
- Open source apps suggested for processing and acting on message data
Certificates

- Identity/Validity conflict
- Solution: constantly changing certificates
- Revocation by fingerprint
- Issuing authority?
Fingerprints

- “No” correspondence between fingerprint and car
- “Hard coded” into device
- If revoked, entire unit must be replaced to function

Photo Credit: NIST
Certificate Delivery

- Haven’t figured out how certificates are delivered to vehicle
- Proposals include cellular, wifi, infrastructure links
- So many opportunities for failure
Worrisome Noise

- Manufacturers want to use this system for commercial apps
- Advertising and other “funding” schemes to pay for CA
- Fixed infrastructure potentially operated by data brokers
Problem: Law Enforcement

• What can they do with this?

• Correlate location, speed to independent identification? (cameras?)
What you Can Do

• Hack the radios
 • Commercially available now

• Hack the protocols

• Become politically engaged
 • Most decisions are not being made by elected officials

• Help find a way to fund the infrastructure without selling out!
Thank you
Acknowledgements

• Professor Dorothy Glancy, who requested my help on this project

• DC 650 (especially Charles Blas) who gave me a reality check with current security and privacy capabilities
Contact

• Christie Dudley
• @longobord
• cdudley@scu.edu