
How the ELF ruined
Christmas
Alessandro Di Federico

UC Santa Barbara

July 18, 2015

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

The exploitation process

1 Find a useful vulnerability
2 Obtain code execution
3 Perform the desired actions

Our focus is on the last step
How can we perform the attack in presence of specific

countermeasures?

Code execution is not enough

• Being able to divert execution is important
• But the problem is then where to point execution
• Modern operating systems prevent execution of data

Code reuse attacks

• It’s not possible to introduce new executable data
• Let’s reuse existing code!

• return-into-libc
• return-oriented programming

Address Space Layout
Randomization

• The OS randomizes the position of libraries
• The code is there, but where?

The typical situation

• The position of the main executable is usually known
• Its image keeps references to imported library functions

• printf
• memcpy
• ...

The need for a memory leak

• Suppose printf is imported but execve is not,we can:
1 Obtain the address of printf
2 Compute the distance between printf and execve
3 Divert execution to

addressOf(printf)�distance(printf , execve)

The problem

• Requires a memory leak vulnerability
• Requires knowledge about the layout of the library
• Requires an interaction between the victim and the attacker

Let’s re-think the attack

What are we trying to do?

We’re trying to obtain the address
of an arbitrary library function

We already have an operating system component for that

The dynamic loader

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

ELF

• ELF stands for Executable and Linking Format

• We’ll consider it to be divided in sections
• .text: executable code
• .data: writeable global data
• .rodata: read-only global data
• .bss: uninitialized global data
• ...

Calling a library function

i n t main () {
p r i n t f (" He l lo wor ld ! \ n ") ;
r e t u r n 0 ;

}

Calling a library function

i n t main () {
p r i n t f @ p l t (" He l lo wor ld ! \ n ") ;
r e t u r n 0 ;

}

The Procedure Linkage Table (PLT)

• It’s an executable section (.plt)
• Contains a trampoline for each imported library function

Lazy loading: printf@plt pseudocode

i f (f i r s t _ c a l l) {
/ / Find p r i n t f , cache i t s address and jump
_d l_run t ime_reso lve (cu r ren t_ob jec t_ i n fo , 123) ;

} e lse {
jmp ⇤ (cached_pr in t f_address)

}

• _dl_runtime_resolve is part of the dynamic loader
• current_object_info is a struct describing the ELF
• 123 is the identifier of the printf relocation

.rel.plt .dynsym .dynstr

...

r offset

r info
...

r offset

r info
...

E
l
f
R
e
l

E
l
f
R
e
l

...

st name

st info
...

...

st name

st info
...

...

E
l
f
S
y
m

E
l
f
S
y
m

...

read\0
...

printf\0
...

dl runtime resolve(link map obj, reloc index)

The resolver

_dl_runtime_resolve proceeds as follow:
1 Find the symbol associated to the relocation
2 Write the symbol value at the address in r_offset

3 Transfer execution to the target function

Where does r_offset point?

• r_offset points to an entry in the Global Offset Table
• The GOT is stored in the .got.plt section
• It holds an entry for each imported function

Sections recap

.plt contains trampolines to enable lazy loading
.got.plt a table of cached addresses of the imported

functions
.rel.plt a table of relocations, one for each imported

function
.dynsym a table of symbols, used by the relocations
.dynstr a list of NULL-terminated strings representing

symbol names

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

The attack scenario

• Suppose that:
• our exploit is able to run a ROP chain
• we have simple gadgets to write memory locations

• What can we do?

Naive approach

.rel.plt .dynsym .dynstr

...

r offset

r info
...

r offset

r info
...

E
l
f
R
e
l

E
l
f
R
e
l

...

st name

st info
...

...

st name

st info
...

...

E
l
f
S
y
m

E
l
f
S
y
m

...

read\0
...

printf\0
...

dl runtime resolve(link map obj, reloc index)

Naive approach

.rel.plt .dynsym .dynstr

...

r offset

r info
...

r offset

r info
...

E
l
f
R
e
l

E
l
f
R
e
l

...

st name

st info
...

...

st name

st info
...

...

E
l
f
S
y
m

E
l
f
S
y
m

...

read\0
...

execve\0
...

dl runtime resolve(link map obj, reloc index)

This is not possible!

.dynstr is read-only

This is not possible!

.dynstr is read-only

The .dynamic section

• The dynamic loader doesn’t lookup sections by name
• All the needed information are in the .dynamic section
• .dynamic contains a key value pairs:

d_tag d_value

DT_SYMTAB .dynsym

DT_STRTAB .dynstr

DT_JMPREL .rel.plt

DT_PLTGOT .got.plt

.dynamic is writeable!

.dynsym .dynstr

.bss .dynamic

...

st name

st info
...

...

E
l
f
S
y
m

...

read\0

printf\0
...

...

d tag: DT STRTAB

d val
...

E
l
f
D
y
n

...

read\0

execve\0
...

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

RELocation ReadOnly

• RELRO is a binary hardening technique
• It aims to prevent attacks as those just described
• It’s available in two flavors: partial and full

Partial RELRO

• Some fields of .dynamic must be initialized at run-time
• This is the reason it’s not marked as read-only in the ELF
• With partial RELRO1 it is marked R/O after initialization

1
gcc -Wl,-z,relro

The previous attack doesn’t work anymore

Another idea

.rel.plt .dynsym .dynstr

...

r offset

r info
...

r offset

r info
...

E
l
f
R
e
l

E
l
f
R
e
l

...

st name

st info
...

...

st name

st info
...

...

E
l
f
S
y
m

E
l
f
S
y
m

...

read\0
...

printf\0
...

dl runtime resolve(link map obj, reloc index)

Can we force the loader to look into a writeable area?

What’s after .rel.plt?

$ r e a d e l f �S / b in / echo
Sect ion Headers :
[Nr] Name Addr Size Flg
[5] . dynsym 08048484 000370 A
[6] . dyns t r 080487 f4 000261 A
[1 0] . r e l . p l t 08048b5c 000178 A
[1 2] . p l t 08048ce0 000300 AX
[1 3] . t e x t 08048 fe0 0035d0 AX
[2 1] . dynamic 0804 f e f c 0000 f0 WA
[2 3] . got . p l t 0804 f f f 4 0000c8 WA
[2 4] . data 080500c0 000060 WA
[2 5] . bss 08050120 0001a4 WA

.rel.plt .bss

...

r info

r offset
...

E
l
f
R
e
l

r info

r offset

st name

st info
...

execve\0
...

E
l
f
R
e
l

E
l
f
S
y
m

dl runtime resolve(l info, reloc index)

reloc_index =
target�baseof(.rel.plt)

sizeof(Elf32_Rel)

Elf32_Rel.r_info =
target2�baseof(.dynsym)

sizeof(Elf32_Sym)

Elf32_Sym.st_name = target3�baseof(.dynstr)

Symbol versioning

• ELF allows to depend on a certain symbol version
• r_info is used also as an index in another table
• Two options:

1 r_info points in both cases to .bss
2 r_info points to a 0 for version and in .bss for the symbol

Is it doable?

• This constraints are computed by leakless automatically
• However sometimes they are not satisfiable
• In particular with 64-bit ELFs using huge pages
• The distance between .rel.plt and .bss is too large

Another option

_dl_runtime_resolve(current_object_info, reloc_index);

• We tried to abuse reloc_index
• What about current_object_info?
• It’s a pointer to a link_map structure
• The pointer is always loaded from GOT[1]
• Its l_info field caches pointers to .dynamic entries

Another option

If we tamper with it we get back to the first attack!

.plt.got

[heap]

.dynamic .dynstr

.bss

got[0]

got[1]

got[2]

...

...
...

l info[DT HASH]

l info[DT STRTAB]

l info[DT SYMTAB]
...

...

l
i
n
k
m
a
p

...

d tag: DT STRTAB

d val
...

E
l
f
D
y
n

...

read\0

printf\0
...

d tag: DT STRTAB

d val
...

read\0

execve\0
...

E
l
f
D
y
n

The full RELRO situation

• Full RELRO2 complicates the situation:
• Lazy loading is disabled
• The GOT is marked read-only after being fully initialized

• Therefore:
• Pointer to the link_map structure not available in GOT[1]
• Also, _dl_runtime_resolve is not available (GOT[2])
• Can’t write in the GOT

2
gcc -Wl,-z,relro,-z,now

DT_DEBUG to the rescue

• Let’s the take a look at the DT_DEBUG .dynamic entry
• Its used by gdb to track the loading of new libraries
• Points to an r_map structure...

r_map holds a pointer to link_map!

.dynamic [heap] .plt.got

.dynamic.dynstr .bss

.dynsym

...

d tag: DT DEBUG

d val
...

d tag: DT STRTAB

d val
...

E
l
f
D
y
n

E
l
f
D
y
n

...

r version

r map

...
...

...

l info[DT STRTAB]
...

l info[DT JMPREL]
...

l next
...

...
...

l info[DT PLTGOT]
...

...

r
d
e
b
u
g

l
i
n
k
m
a
p

l
i
n
k
m
a
p

...

d tag: DT PLTGOT

d val
...

E
l
f
D
y
n

GOT[0]

GOT[1]

GOT[2]
...

d tag: DT JMPREL

d val

r info

r offset

reloc target

d tag: DT STRTAB

d val
...

read\0

execve\0
...

E
l
f
D
y
n

E
l
f
D
y
n

E
l
f
R
e
l

...

read\0

printf\0
...

dl runtime resolve(l info, reloc index)

...

st name

st info
...

...

E
l
f
S
y
m

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

leakless

• leakless implements all these techniques
• Automatically detects which is the best approach
• Outputs:

• Instructions on where to write what
• If provided with gadgets, the ROP chain for the attack

Gadgets

RELRO
Gadget N P H F

?(destination) = value X X X X
?(?(pointer)+offset) = value X X
?(destination) = ?(?(pointer)+offset) X
?(stack_pointer +offset) = ?(source) X

What loaders are vulnerable?

We deem vulnerable:
• The GNU C Standard Library (glibc)
• dietlibc, uClibc and newlib
• OpenBSD’s and NetBSD’s loader

Not vulnerable:
• Bionic (PIE-only)
• musl (no lazy loading)
• (FreeBSD’s loader)

How many binaries?

Index

The exploit

The dynamic loader

The attacks

RELRO

Implementation

Recap & countermeasures

What are the advantages of leakless?

1. Single stage

• It doesn’t require a memory leak vulnerability
• It doesn’t require interaction with the victim
• “Offline” attacks are now feasible!

1. Single stage

• It doesn’t require a memory leak vulnerability
• It doesn’t require interaction with the victim
• “Offline” attacks are now feasible!

2. Reliable and portable

• If feasible, the attack is deterministic
• A copy of the target library is not required
• Since it mostly relies on ELF features it’s portable
• Exception: link_map, but it’s just minor fixes

2. Reliable and portable

• If feasible, the attack is deterministic
• A copy of the target library is not required
• Since it mostly relies on ELF features it’s portable
• Exception: link_map, but it’s just minor fixes

3. Short

• One could implement the loader in ROP
• longer ROP chains
• increased complexity

• The cost from the second call on is negligible

3. Short

• One could implement the loader in ROP
• longer ROP chains
• increased complexity

• The cost from the second call on is negligible

4. Code reuse and stealthiness

• Everything is doable with syscalls
• But it’s usually more invasive
• With leakless you can do this:

4. Code reuse and stealthiness

• Everything is doable with syscalls
• But it’s usually more invasive
• With leakless you can do this:

Pidgin example

void ⇤p , ⇤a ;
p = purple_proxy_get_setup (0) ;
purp le_proxy_ in fo_se t_hos t (p , " l e g i t . com ") ;
pu rp le_proxy_ in fo_se t_por t (p , 8080) ;
purp le_proxy_ in fo_se t_ type (p , PURPLE_PROXY_HTTP) ;

a = purp le_accounts_ f ind (" usr@xmpp" , " p rp l�xmpp ") ;
purp le_account_disconnect (a) ;
purple_account_connect (a) ;

5. Automated

• leakless automates most of the process
• The user only needs to provide gadgets

5. Automated

• leakless automates most of the process
• The user only needs to provide gadgets

Countermeasures

• Use PIE
• Disable DT_DEBUG if not necessary
• Make loader’s data structure read-only
• Validate input

But most importantly

Binary formats and core system components
should be designed with security in mind

Acknowledgments

All of this was possible thanks to:

• Amat Cama
• Yan Shoshitaishvili
• Giovanni Vigna
• Christopher Kruegel

mailto:cama.a@husky.neu.edu
mailto:yans@cs.ucsb.edu
mailto:vigna@cs.ucsb.edu
http://chris@cs.ucsb.edu

Thanks

License

This work is licensed under the Creative Commons
Attribution-ShareAlike 3.0 Unported License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, 444 Castro Street, Suite
900, Mountain View, California, 94041, USA.

http://creativecommons.org/licenses/by-sa/3.0/

	The exploit
	The dynamic loader
	The attacks
	RELRO
	Implementation
	Recap & countermeasures

