Introduction to SDR & the Wireless Village

DEFCON
2015
Who the Frig...

satanklawz

DaKahuna
It takes a village...

Rick Mellendick
Zero_Chaos
Marauder
Terrible

RedBaron
SimonJ
Spiral Suitcase
0xAA
Agenda for the next 45 minutes

- Ham Radio Transceivers
- SDR Rx/Tx
- Antenna Theory from Ham to SDR
- The (S) in SDR
- Common problems with SDR Labs
- A bit of fun
- Take all this stuff to the Village
Materials Checklist if you wanna follow

- RTL-SDR
- Modern Laptop
- Pentoo
- Headsets
- Antennas
Oops...

Don’t have something?

DEF CON Vendors
Hacker Warehouse Hak5
Nuand SimpleWiFi

Fry’s Electronics
Address: 6845 S Las Vegas Blvd, Las Vegas, NV 89119
Phone: (702) 932-1400
Hours: 9:00 am – 8:00 pm
HAM Radio Transceivers – Fixed

Frequencies: HF, VHF, UHF, VHF/UHF

Power Output: 100 – 200 Watts

Cost: $1,000 and up

Source: http://digichar.com/unt/17066-yaesu_ft___901dm_hf_ham_radio_transceiver.html
 http://www.airadio.com/Icom-Transceiver-IC-7800*productID_293-products_details
HAM Radio Transceivers – Mobile

Frequencies: HF, VHF, UHF, VHF/UHF

Power Output: 40 – 50 Watts

Cost: $300 - $500

Source: http://www.hamradio.com
HAM Radio Transceivers – Handheld

Frequencies: VHF, UHF, VHF/UHF

Power Output: 4 – 5 Watts

Cost: $35 - $300

Source: http://www.hamradio.com
HamSphere
Java Based (Windows, OS X,
Just add microphone (headset recommended)
HAM Radio Transceivers - SDR

BladeRF (Nuand)
Frequency: 300Mhz-3.8Ghz
Power: ~6 dBm (4 mW)
Cost: $420 (x40) $650 (x115)

HackRF (GreatScott Gadgets)
Frequency: 1Mhz – 6 Ghz
Power: 0-15 dBm (1-32mW)
Cost: $330
HAM Radio Transceivers (cont’d)

Interesting uses:
- Satellite communications
- Earth-moon-earth (EME)
- Packet Radio
- Radio Teletype (RTTY)
- Internet Radio Linking Project (IRLP)
- Morse Code
SDR Rx/Tx

RTL-SDR ; RX only
HackRF ; TX and RX capable SDR board that’s hugely affordable
BladeRF ; TX and RX in an affordable solution
USRP ; the nuke
Hacks ; RaspberryPi, etc
How to draw an Owl.

"A fun and creative guide for beginners"

Fig 1. Draw two circles
Fig 2. Draw the rest of the damn Owl
What ‘is’ Software Defined Radio?

- Radio front end
- No dedicated IC back end for decoding radio signal
- Digitize signal and pass it all to the host system
- In theory, if you can tune it, you can be that type of radio
SDR Captured Data

- No packets - just raw data
- Raw radio samples of some bandwidth per sample
- Bandwidth defines amount of spectrum covered by samples
IQ Data

• SDR data commonly called “IQ”
• Imaginary and Quotient components of signal
• Two-part sample consisting of amplitude and phase
• Sampling only amplitude gives a signal at a time - but no idea about frequency
• Fancy trig gets us signal at specific time
Choose Your Weapon

- Bit depth of samples (usually 8 or 16 bit) determines fidelity, much like 16 bit color
- Sample width, such as 200KHz or 20MHz, defines how much spectrum can be captured at a time
- Frequency range, such as 30MHz to 4GHz, defines the range the radio can be tuned to
Antenna Theory from HAM to SDR

ANTENNA - noun:
A piece of metal which conducts electricity
Radiates and receives the signals
Antenna System

Diagram:
- Antenna
- Feeder
- Antenna Coupling Coil
- Transmitter
Antenna System (cont)

Antenna Systems Must Match Transmitter
- Prune length
- Antenna tuner
- Matching Section

Polarization
- Horizontal
- Vertical
- Circular
Calculation crash course

\[v = f \times \lambda \]

speed = wavelength \times frequency

<table>
<thead>
<tr>
<th>Frequency (Mhz)</th>
<th>¼ Wave Length (feet)</th>
<th>½ Wave length (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>7.15</td>
<td>32</td>
<td>65</td>
</tr>
<tr>
<td>14.200</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>21.2</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>28.5</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Low Frequency</td>
</tr>
<tr>
<td>Very Low Frequency</td>
</tr>
<tr>
<td>Low Frequency</td>
</tr>
<tr>
<td>High Frequency</td>
</tr>
<tr>
<td>Very High Frequency</td>
</tr>
<tr>
<td>Ultra High Frequency</td>
</tr>
<tr>
<td>Super High Frequency</td>
</tr>
</tbody>
</table>
Antenna Characteristics

Reciprocity of Antennas
Antenna Gain
Antenna Polarization

The polarization of the wave is the same as the electric field and in this case it is horizontal.
Antenna types

Omnidirectional

Semi to Very Directional
Propagation Characteristics
The S in the DR

Your success in receiving is going to depend on your antennas and filters.

Do not transmit with a mismatched antenna system.
SDR Tools

- Multiple tools
- GQRX, SDR# for browsing spectrum
- GNU Radio is the grand-daddy of decoding platforms

Pick the tool for the right job
What am I seeing/hearing?

Tools of the Trade

GQRX - This is where ya start
Baudline - Non GPL and quirky (50MB file limit)
GNURadio - GRADWare and goofy
Other tools

1. dsd (audio input selection problem)
 - Demodulate P25, Mototurbo
2. multimon-ng
 - Demodulates almost ALL THE THINGS
3. smartnet-scanner
 - More P25 goodness (uses radioreference)
Linux Only?

- For most of the tools, yes.
- To look around, no.
- Use the same dongle
- Opposed to GQRX
 - SDRSharp - plugins
 - HDSDR
Common problems in SDR labs

- Antennas
- Lightning
- Static
- Noise
- Clocks and Drift
Static

- The cheaper RTL’s do NOT have static protection
- Wind generates static
- Rubbing things… generates static

Static protection is a must!
Assholes. Missing ESD protection.

http://ncrmnt.org/wp/2012/06/30/rtl-sdr-static-protection/
Noise Reduction Must Reads

The-Mitigation-of-Radio-Noise-from-External-Sources-at-Radio-Receiving-Sites
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA468464

Naval RFI Handbook
BFG Noise

Computer Power Supply not in Accordance with Barrier, Feed, and Ground (BFG) Principles

Improper grounding solution
Clocks

- The cheaper SDR’s have a lot of noise in them
- Choke them out and isolate noise sources
- Use a unified PPM if you use more than one for IQ
A bit of fun - Hardware Mods

Multichannel Receivers
http://yo3iiu.ro/blog/?p=1450
Hardware Mods

- As the RTL warms up, you’ll get signal drift
- Know your offset, National Weather Service

162.400MHz 162.425MHz 162.450MHz 162.475MHz 162.500MHz 162.525MHz 162.550MHz

Add some cooling!
http://sdrformariners.blogspot.com/2013/12/cooling.html
TS(-CM) on the cheap

Technical Surveillance and Countermeasures

● It’s a process, not a tool
● Use lossy antennas and mismatched systems to your advantage
● Know your radio neighborhood
● HEATMAPS!
Take it to the Village!
The Wireless Village

Workshops and Presentations:
 Antenna theory and constructions
 Wireless Penetration Testing
 Software Defined Radio
 and others
The Wireless Village (cont’d)

Wi-Fi
 ✷ 802.11 all-the-things
 ✷ En/Decryption
 ✷ Old to Very New
 ✷ Fox and Hound
 ✷ All the WiFi’z

Other Wireless
 ✷ Zigbee

SDR
 ✷ Fox and Hound
 ✷ Duck Hunt
 ✷ Seek and Demod
 ✷ RF Meta analysis
 ✷ Radio Signal Mapping
The Wireless Village (cont’d)

Wireless Capture The Flag
 Wireless
 SDR
 Hide & Seek RF Style
Questions