Cracking Cryptocurrency Brainwallets

Ryan Castellucci

DRAFT SLIDES, WILL BE REVISED! FOR FINAL VERSION AFTER TALK
https://rya.nc/dc23
Disclaimer

Stealing from people with weak passphrases isn’t nice. Don’t be an asshole.
What’s a cryptocurrency?

- Bitcoin is the most widely known example.
- Electronic money which can operate without banks or governments
- Secured with cryptographic algorithms
- Transferred via a sort of electronic check
- Checks are made public to prevent bounces
- Control of key == Control of money
What’s a brainwallet?

- A brainwallet is a cryptocurrency key that is created from a password (or passphrase)
- Some people believe that this will make their money harder to steal (or seize)
- Knowledge of password == Control of money

- Sending money to a brainwallet publishes a hash of it. What if the hash can be cracked?
It seemed like it might be interesting

- Came across a blog post about brainwallets
 - The author made some and posted about it to see how long they’d take to crack
- I figured writing a cracker would be a fun way to spend my commute for a few days
- But why try to crack three brainwallets when you can try to crack all of them?
My first brainwallet cracker

- Simple design, pass a file with pubkeyhashs, then pipe words/phrases on STDIN
- Written in C using OpenSSL’s crypto
- ~10,000 passwords per second on my PC
- The slowest part, by far, is turning the private key into a public key. More on that later.
Taking it for a spin

- I start feeding it password cracking wordlists
- Find some tiny amounts of money
- Scrape wikiquote and a few other sites to build myself a phraselist
- Run the phraselist - it gets some hits after a few hours
- Pull balances, see one with 250BTC
Well, that is interesting. Now what?

- 250BTC was worth about $15k
- I wanted to fix this. I’m friends with Dan Kaminsky. He’s fixed some big things. After regaining my composure, I called him.
- As luck would have it, he was in town
- We meet up about an hour later to figure out how to do the right thing
A plan begins to form

- I felt it would be wrong to take and “hope” find the rightful owner
- I could send some spare change to it and then take it back
- You can even put short words in a Bitcoin address, so a subtle message is possible
- My girlfriend (now wife) piped up with “yoink”
That time I accidently stole 250 BTC

- After getting an appropriate address with vanitygen, I do some transactions

1yoinkJLNJPPlzhNDXqjkB3wp1YYAYWMrw
0.00031337 BTC

13wRthmVPaLNvkb35XM2mJ7i9moVQJVR74
249.99918663 BTC

-250 BTC
Oops. :-(

- What’s that other address?
- …why isn’t it in the list of my addresses?
- …
- …oh, right, that’s my change address…
- …and Bitcoin had its own opinions on what outputs should be spent
- Quick, before anyone notices!
Wait, what?

- Bitcoin transactions have inputs and outputs
- Old, unspent outputs are used as inputs on a new transaction, but they can only be spent in full
- You might need more than one, and you might need to make change for yourself
- If you want details, see https://rya.nc/b4
See, I put it back. It’s *fine*.

- After fixing it, I did a few “run a few cents through it” transactions
- The owner did not take the hint :-(
- I’ll just find them. The address was funded by 12DK76obundhnnbGKcaKEn3BcMNNH5SVU4
- That address received a payout from DeepBit. DeepBit collects email addresses.
Social engineering, Whitehat style

- I send “Tycho” the guy who runs DeepBit messages via BitcoinTalk, email, and IRC
- Eventually I manage to talk to him on IRC
- I explain that one of his users has coins stored unsafely, but can’t elaborate
- He wouldn’t give out any user details
- He does agree to contact the user for me
Success.

- The guy emails me, and I ask him to call me
- He does, and I establish that it was indeed his brainwallet
- He moves the coins and insists on sending me a small reward
Some history

- August 2011 Kaminsky demos Phidelius, an OpenSSL hack, mentions Bitcoin as a possible use https://rya.nc/b5
- January 2012 Casascius adds a brainwallet entry to the Bitcoin wiki
- April 2012 brainwallet.org comes online
- I couldn’t really find anything pre-2012
How to make a brainwallet

"correct horse battery staple"	**Passphrase**

v v v v v v v v v	**SHA256**

c4bbcb1fbec99d65bf59d85c8cb62ee2 | **Private key**
db963f0fe106f483d9afa73bd4e39a8

v v	**privateToPublic**

(UNCOMPRESSED) (COMPRESSED)

| 04 | 78d430274f8c5ec1321338151e9f27f4 | 03 | 78d430274f8c5ec1321338151e9f27f4 | **Public key**
---|---|---|---|---|---
c676a008bdf8638d07c0b6be9ab35c71 | c676a008bdf8638d07c0b6be9ab35c71
a1518063243acd4dfe96b66e3f2ec801 | | | | | **SHA256**
3c8e072cd09b3834a19f81f659cc3455 | | | | |

v v v v v v v v v v v v v v v v v v	**SHA256**

b57443645468e05a15302932b06b05e0	7c7c6fae6b95780f7423ff9ccf0c552a
580fa00ba5f5e60499c5c7e7d9c7f50e	8a5a7f883bdb1ee6c22c05ce71c1f288

v v v v v v v v v v v v v v v v v v	**RIPEMD160**

c4c5d791fcb4654a1ef5	79fbfc3f34e7745860d7	**Hash160** (used for tx)
e03fe0ad3d9c598f9827 | 6137da68f362380c606c |

v v v v v v v v v	**Base58Check**

1JwSSubhmg6iPtRjtyqhUYYH7bZg3Lfy1T | 1C7zdTfnkzmr13Hfa2vNn55SYRK6nEKyq8 | **Address**
What’s wrong with that?

- It’s an unsalted, un-iterated password hash that you publish to the world…
- ...and cracking them directly yields pseudonymous, easily laundered currency
- We’ve known for years that passwords need to be run through a hardened hash
- People have very poor intuition of how strong their passphrases are
Better options

- Electrum-style “12 word seed”, computer generated but memorable with some effort
- WarpWallet allows for a salt (email) and uses key stretching, but weak passphrases still a problem
- BIP38 “paper wallets” - print it out and hide it under your mattress
Key strength

- Usually measured in bits
- Adding a bit doubles the strength
- Adding ten increases it a thousandfold
- Figuring out how many bits a password is equivalent to is very, very hard
- Microsoft’s estimate was that the average user’s password was equivalent to ~40 bits
- That seems absurdly high
Key stretching

- Make cracking hard by slowing it down
- scrypt, bcrypt, pbkdf2, sha512crypt, etc
- In practice, you can make it on the order of a million times slower
- Gain 20 bits +/- 4 bits in effective strength
- Need somewhere between 72 and 128 bits
- There’s a significant shortfall here
Extreme key stretching (just an idea)

- Generate a short (16-24 bits) random salt
- Have the KDF chew on it for a few seconds
- Save the output (the shortcut)
- Use the shortcut as salt to a second KDF
- Without the shortcut, you can spend a few hours brute forcing the salt
- A vetted scheme for this would be needed
Actually secure passwords

- Pick it randomly - easy, right?
- Random numbers are hard for humans to remember
- Password managers!
- What protects the password manager?
- Backups are hard
- Turtles all the way down
Cryptomnemonics

- Humans have a hard time memorizing a bunch of random numbers
- Turn the random numbers into something easier to memorize
- Diceware is a very old scheme that does this
- Open problem, actively researched
- I built https://rya.nc/storybits - feedback?
- How easy can we make these things?
Introducing Brainflayer

- Does about 100,000 passphrases per second on my quad core i7 3.5GHz
- Using EC2 spot instances would cost about $700 to check a billion passphrases
- A mid-sized botnet with million nodes each trying 10,000 passphrases per second could check nearly 10^{15} ($\sim2^{49.5}$) in a day
Introducing Brainflayer (cont’d)

- At that speed a passphrase of four random common English words falls in about an hour
- Low level optimization and fancy math are not my thing, but there is plenty of room for improvement here even without GPGPU
- Has a lookup table generation mode
- Crack multiple cryptocurrencies at once
How Brainflayer works

- We need to go from passphrase to Hash160 and check if that Hash160 has been used.
- I got about a 10x speed increase switching to libsecp256k1 to generate the public key.
- Quickly checking if a Hash160 has ever received money can be done with a data structure called a bloom filter.
Bloom filter?

- A space-efficient probabilistic data structure
- Consists of a large array of bits
- To add an item, hash that item n ways and set n corresponding bits
- To check if an item is present, hash that item n ways - if all n corresponding bits are set then it *probably* is.
Probably?

- The error rate can be made quite small
- Most of the time we’re getting a “no” and we want that to be fast
- The “probably” can be fully verified later
Isn’t running more hashes slow?

- Yes, even the non-cryptographic ones
- So we don’t run more hashes
- Our items are already hashed
- Just slice and dice the bits, which is fast
Building a phraselist

- Song lyric sites, Wikiquotes, Wikipedia, Project Gutenberg, forums, reddit, etc.
- Needs normalization, then normalized lists can have rules applied to them
Example cracked brainwallets

- 22Jan1997
- Am I invisible because you ignore me?
- antidisestablishm3ntarianism
- youaremysunshinemysunshine
- The Persistence Of Memory
- toby102
- permit me to issue and control the money of a nation and i care not who makes its laws
Everyone loves demos.

<INSERT DEMO HERE>
What’s *already* happening?

- There appear to be at least four currently active brainwallet thieves, probably more
- Send funds to a particularly weak brainwallet and they’ll be gone in seconds
- Lookup tables for large numbers of passwords have clearly been built
- Adaptive behaviour has been observed
- Cracking speeds unclear
Lookup tables?

- There is competition for weak brainwallets
- Must be fast, rainbow tables too slow
- Use your favorite key-value store
- Truncate the Hash160 (64 bits, save space)
- Store the passphrase or private key, whichever is shorter
- A $120 4TB disk will store 2^{36} passphrases
Lookup tables? (cont’d)

- Monitors for transactions
- Check addresses against key-value store
- LRU cache in front of key-value store
- On a hit, use the private key to make a new transaction taking the funds
- Do this faster than others trying to do the same
- I have not built any of this, but it exists
SUPER SECRET SECOND DEMO

<INSERT DEMO HERE>