Sk3wlDbg:

Emulating all (well many) of the things with Ida

Chris Eagle
Sk3wl 0f r00t
Disclaimer

Everything I say today is my own opinion and not necessarily the opinion of my employer and certainly not the opinion of DARPA.
Who am I?

– Senior lecturer of computer science
– Computer security researcher
– Reverse engineer
– Inveterate Capture the Flag player
– Performer of stupid IDA tricks
Introduction

- CPU emulators are useful in a variety of cases
 - System design before hardware is available
 - Running code from obsolete platforms
 - Studying code without need to stand up full hardware system

- Some emulators go well beyond CPU to emulate full system including hardware
Goals

- Make lightweight CPU emulator available in a static reverse engineering context
- Temporarily step away from reading a disassembly to confirm behavior
- Incorporate results of a computation back into a static analysis
End result - Sk3wlDbg

- Lightweight emulator integrated into a disassembler
 - Disassembler - IDA Pro
 - Emulator - Unicorn Engine
IDA Pro

- Commercial disassembler
- Supports many processor families
- Integrated debugger supports x86 and ARM targets
- Decompiler
 - 32/64 bit x86
 - 32/64 bit ARM
Unicorn Engine

- Announced at BlackHat USA 2015
- Same people that did Capstone
- Emulator framework based on QEMU
- Supports x86, x86-64, ARM, ARM64, Sparc, MIPS, M68k
- Related projects
Some other, high profile emulators

- Bochs
 - “Bochs is a highly portable open source IA-32 (x86) PC emulator written in C++”
 - http://bochs.sourceforge.net/

- QEMU
 - “QEMU is a generic and open source machine emulator and virtualizer.”
 - http://www.qemu.org
Emulators and IDA Pro

- 2003 ida-x86emu
 • For deobfuscating x86 binaries
- 2009 Hex-Rays adds Bochs “debugger” module
- 2014 msp430 for use with microcorruption
 • https://microcorruption.com
- 2016 Unicorn integration
 • Because why not
Rationale

- Looked at QEMU and Bochs briefly when writing ida-x86emu
 • Much too heavy weight for what I wanted
 • Too lazy to dig into the code to learn them and strip down
- The Unicorn people did all the heavy lifting
- Brings more architectures to the table
Implementation — two choices

- Emulate over the IDA database itself using the database as the backing memory
 - ida-x86emu does this
 - Forces changes on the database — NO UNDO

- Leverage the IDA plugin architecture to build a debugger module
 - IDA’s Bochs debugger module does this
Result

- Many unhappy dev hours, unhappy wife
- Mostly undocumented IDA plugin interface
 vs
- Beta quality emulator framework
- BUT...
It’s Alive!

- Sub-classed IDA debugger_t for all supported Unicorn CPU types
- Simple ELF and PE loaders map file into Unicorn
- Fallback loader just copies IDA sections into Unicorn
• Integration issues
 – IDA remains a 32-bit executable
 – Can only interface w/ 32-bit libraries
 – Unicorn doesn’t have great support for 32-bit builds
 – Unicorn’s underlying QEMU code depends on glib
 • Complicates use on Windows
Demo

- Probably not a good idea very alpha code
- Bugs could be Unicorn’s or they could be mine

DEMO TIME
LET'S HOPE THE DEMO-GODS ARE SMILING!
• Demos
 – Simple deobfuscation
 • ida-x86emu, Bochs, Sk3wlDbg
 – Local ARM emulation on Windows
 – Local MIPS emulation on Windows
 – Scripted control of Sk3wlDbg to solve CTF challenge
• What the future holds (1)
 • Better user interface when launching emulator
 • Where emulation should actually begin?
 • Initial register state?
 • Implementation of IDA’s appcall hook
 • Allows you to call functions in the binary from your IdaPython scripts as long as the function has a prototype
• What the future holds (2)
 – Extensible hooking for library functions and system calls
 • Ideally you implement your hook in IdaPython and it gets called
 – Option to load shared libraries into emulation along with executable loaded in IDA
Where to get it

- https://github.com/cseagle/sk3wldbg
- It’s already there
- Will push latest changes after Defcon
Questions ???

- Contact info
 - Email: cseagle at gmail dot com
 - Twitter: @sk3wl