Auditing 6LoWPAN networks
Using Standard Penetration Testing Tools

Adam Reziouk
Arnaud Lebrun
Jonathan-Christofer Demay
The 6LoWPAN protocol

• IPv6 over Low power Wireless Personal Area Networks

• Header compression flags
 • Addresses factoring (IID or predefined)
 • Predefined values (e.g., TTL)
 • Fields omission (when unused)
 • Use of contexts (index-based)
 • UDP header compression (ports and checksum)

• Packet fragmentation
 • MTU 127 bytes Vs 1500 bytes
 • 80 bytes of effective payload
What’s the big deal?
The IEEE 802.15.4 standard

- **PHY layer and MAC sublayer**
- **Multiple possible configurations**
 - Network topology
 - Data transfer model
- **Multiple security suites**
 - Integrity, Confidentiality or both
 - Encryption key size (32, 64 or 128)
- **Multiple standard revision**
 - 2003
 - 2006 and 2011
Deviations for the standard
The ARSEN project

• **Advanced Routing between 6LoWPAN and Ethernet Networks**

• **Detect the configuration of existing 802.15.4 infrastructure**
 • Network topology
 • Data transfer model
 • Security suite
 • Standard revision
 • Standard deviations

• **Handle packet translation**
 • Compression/decompression
 • Fragmentation/defragmentation
 • Support all possible IEEE 802.15.4 configurations
Based on Scapy-radio

```python
>>> pckt = Dot15d4FCSS() / Dot15d4Data() / ZigbeeNwk()
>>> pckt.show()

>>> 
```
Two main components

• **The IEEE 802.15.4 scanner**
 - Build a database of devices and captured frames
 - The devices that are running on a given channel
 - The devices that are communicating with each other
 - The types of frames that are exchanged between devices
 - The parameters that are used to transmit these frames

• **The 6LoWPAN border router**
 - TUN interface
 - Ethernet omitted
 - Scapy automaton
New Scapy layers

- **Dot15d4.py**
 - Several bug fixes
 - Complete 2003 and 2006 support

- **Sixlowpan.py**
 - Uncompressed IPv6 support
 - Complete IP header compression support
 - UDP header compression support
 - Fragmentation and defragmentation support
Demonstration
Thank you for your attention