Side-channel attacks on high-security electronic safe locks

DEF CON 24

plore@tuta.io
Background – Electronic safe locks
Background – Electronic safe locks

• In scope: decent, listed locks
 – UL Type 1 High-security electronic lock
• Out of scope: cheap, poor-quality locks
Sargent & Greenleaf 6120-332
6120 – System model

Outside of safe
- Keypad
 - Buzzer
 - Battery

Inside of safe
- Lock
- MCU
- EEPROM
- Bolt motor
- Steel safe door
- ¼” hole for wires
Higher current consumption means the bit being read from EEPROM is a 0, and a lower current means the bit is 1.
6120 – Power analysis

- 1 nibble per keycode digit
- Only lower byte in each EEPROM word is used
6120 – Demo
S&G Titan PivotBolt

STM8S105K6
Titan – Timing attack

• Entire six-digit keypad sequence is captured before starting comparison to key from EEPROM
• Pseudocode of Titan keycode comparison:

```c
bool check_code(int enteredCode[6], int actualCode[6])
{
    for (int digit = 0; digit < 6; digit++)
        if (enteredCode[digit] != actualCode[digit])
            return false;
    return true;
}
```

Each iteration takes another 28 μs
Titan – Timing attack

- Current consumption markers for timing delta
Titan – Timing attack

Suppose that the actual code is 908437

<table>
<thead>
<tr>
<th>Code tried</th>
<th>Correct run length</th>
<th>Current trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>923456</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>913456</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>903456</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- **Wrong**

Legend:
- Correct run length
- Current trace
Titan – Timing attack

- The more digits you have correct, the more delayed the current-consumption rise
Titan – Lockout

Try wrong keycode

EEPROM

failureCount++

Failure count >= 5

LOCKOUT
Titan – EEPROM write example

Starting value: 0xA4
Write value: 0x1C

<table>
<thead>
<tr>
<th>Time from start of write</th>
<th>Value in EEPROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0xA4</td>
</tr>
<tr>
<td>400 μs</td>
<td>0x??</td>
</tr>
<tr>
<td>500 μs</td>
<td>0x00</td>
</tr>
<tr>
<td>2500 μs</td>
<td>0x??</td>
</tr>
<tr>
<td>3000 μs</td>
<td>0x1C</td>
</tr>
</tbody>
</table>
Titan – Interrupt EEPROM write

Supply voltage

2.7v Brownout

Current consumption

600 µs from detection

1.1 ms from write start
The hack – Custom PCB

- Micro-ammeter
- Power supply/control for lock
- Keypress simulator
The hack – Algorithm

• Try all values for first digit
 – Oversample to reduce noise
• Longest time delay \(\rightarrow\) correct value
• Repeat for digits 2 through 5
• Every fifth attempt, clear the lockout counter
• Brute-force the sixth digit
 – Just 10 attempts
Titan – Demo
Conclusions

• Applicability to other systems and mitigations
 – Power analysis
 – Timing attack
 – EEPROM manipulation

• Burglars aren’t going to bother with this
Feel free to email me:

plore@tuta.io
Backup slides
Background – Electronic safe locks

• Opening a lock
 – User enters code on keypad
 – Microcontroller (MCU) checks code
 – MCU drives motor to free bolt if correct
Background – Electronic safe locks

• Safe lock certification
 – UL Type 1 High-security electronic lock
 – Many others

• Out of scope: cheap, non-certified locks
 – Many of these can be easily brute-forced
 – Some can be “spiked” (bolt motor driven directly)
 – Some can be bypassed mechanically (see, e.g., [2] or [3])
Background – Electronic safe locks

- All logic resides inside safe
- Only keypad and battery are outside safe
- Connection is via wires through a small hole in the door metal
- Hardened steel plate in lock
- No direct access to the lock PCB possible
Background – Side channel attack

• Side channel attack
 – Gaining knowledge about the state of a device through unintentional information leakage

• Attacks used in this talk
 – Power analysis
 – Timing attack

• And, a related concept
 – Forcing a system into a particular state using unexpected inputs (in this case, removing power)
S&G 6120

- Sargent & Greenleaf 6120-332 safe lock
 - UL listed Type 1 high-security electronic lock
 - Still being produced (as of at least late 2015)
 - Designed and certified ca. 1994
 - ST62T25C microcontroller (ST)
 - 93LC46B serial EEPROM (Microchip)
 - 9v alkaline battery located in external keypad
 - S&G is a large, well-respected lock manufacturer
6120 – MCU

ST6215C/ST6225C

8-BIT MCUs WITH A/D CONVERTER,
TWO TIMERS, OSCILLATOR SAFEGUARD & SAFE RESET

- Memories
 - 2K or 4K bytes Program memory (OTP, EPROM, FASTROM or ROM) with read-out protection
 - 64 bytes RAM
- Clock, Reset and Supply Management
 - Enhanced reset system
 - Low Voltage Detector (LVD) for Safe Reset
 - Clock sources: crystal/ceramic resonator or RC network, external clock, backup oscillator (LFO)
 - Oscillator Safeguard (OSG)
 - 2 Power Saving Modes: Wait and Stop
- Interrupt Management
 - 4 interrupt vectors plus NMI and RESET
 - 20 external interrupt lines (on 2 vectors)
 - 1 external non-interrupt line
- 20 I/O Ports
 - 20 multifunctional bidirectional I/O lines
 - 16 alternate function lines
 - 4 high sink outputs (20mA)
- 2 Timers
 - Configurable watchdog timer
 - 8-bit timer/counter with a 7-bit prescaler
- Analog Peripheral
 - 8-bit ADC with 16 input channels
- Instruction Set
 - 8-bit data manipulation
 - 40 basic instructions
 - 9 addressing modes
 - Bit manipulation

- Development Tools
 - Full hardware/software development package

(See Section 12.5 for Ordering Information)
6120 – EEPROM

93AA46A/B/C, 93LC46A/B/C, 93C46A/B/C

1K Microwire Compatible Serial EEPROM

Device Selection Table

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Vcc Range</th>
<th>ORG Pin</th>
<th>Word Size</th>
<th>Temp Ranges</th>
<th>Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>93AA46A</td>
<td>1.8-5.5</td>
<td>No</td>
<td>8-bit</td>
<td>I</td>
<td>P, N, ST, MS, OT</td>
</tr>
<tr>
<td>93AA46B</td>
<td>1.8-5.5</td>
<td>No</td>
<td>16-bit</td>
<td>I</td>
<td>P, N, ST, MS, OT</td>
</tr>
<tr>
<td>93LC46A</td>
<td>2.5-5.5</td>
<td>No</td>
<td>8-bit</td>
<td>I, E</td>
<td>P, N, ST, MS, OT</td>
</tr>
<tr>
<td>93LC46B</td>
<td>2.5-5.5</td>
<td>No</td>
<td>16-bit</td>
<td>I, E</td>
<td>P, N, ST, MS, OT</td>
</tr>
<tr>
<td>93C46A</td>
<td>4.5-5.5</td>
<td>No</td>
<td>8-bit</td>
<td>I, E</td>
<td>P, N, ST, MS, OT</td>
</tr>
<tr>
<td>93C46B</td>
<td>4.5-5.5</td>
<td>No</td>
<td>16-bit</td>
<td>I, E</td>
<td>P, N, ST, MS, OT</td>
</tr>
<tr>
<td>93AA46C</td>
<td>1.8-5.5</td>
<td>Yes</td>
<td>8 or 16-bit</td>
<td>I</td>
<td>P, N, ST, MS</td>
</tr>
<tr>
<td>93LC46C</td>
<td>2.5-5.5</td>
<td>Yes</td>
<td>8 or 16-bit</td>
<td>I</td>
<td>P, N, ST, MS</td>
</tr>
<tr>
<td>93C46C</td>
<td>4.5-5.5</td>
<td>Yes</td>
<td>8 or 16-bit</td>
<td>I</td>
<td>P, N, ST, MS</td>
</tr>
</tbody>
</table>

Features

- Low-power CMOS technology
- ORG pin to select word size for 16C version
- 128 x 8-bit organization 'A' ver. devices (no ORG)
- 64 x 16-bit organization B ver. devices (no ORG)
- Self-timed ERASE/WRITE cycles (including auto-erase)
- Automatic ERAL before WRAL
- Power-on/off data protection circuitry
- Industry standard 3-wire serial I/O
- Device Status signal (READY/BUSY)
- Sequential READ function
- 1,000,000 E/W cycles
- Data retention > 200 years
- Temperature ranges supported
 - Industrial (I) -40°C to +85°C
 - Automotive (E) -40°C to +125°C

Pin Function Table

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Chip Select</td>
</tr>
<tr>
<td>CLK</td>
<td>Serial Data Clock</td>
</tr>
<tr>
<td>DI</td>
<td>Serial Data Input</td>
</tr>
<tr>
<td>DO</td>
<td>Serial Data Output</td>
</tr>
<tr>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>NC</td>
<td>No Internal connection</td>
</tr>
<tr>
<td>ORG</td>
<td>Memory Configuration</td>
</tr>
<tr>
<td>VCC</td>
<td>Power Supply</td>
</tr>
</tbody>
</table>

Description

The Microchip Technology Inc. 93XXX46A/B/C devices are 1K bit low voltage serial Electrically Erasable PROMs (EEPROM). Word-selectable devices such as the 93AA46C, 93LC46C or 93C46C are dependent upon external logic levels driving the ORG pin to set word size. For dedicated 8-bit communication, the 93AA46A, 93LC46A or 93C46A devices are available, while the 93AA46B, 93LC46B and 93C46B devices provide dedicated 16-bit communication. Advanced CMOS technology makes these devices ideal for low power, moveable memory applications. The entire 93XX Series is available in standard packages including 8-lead PDIP and SOIC, and advanced packaging including 8-lead MSOP, 8-lead SOT-23, and 8-lead TSSOP. Pb-free (Pure Matte Sn) finish is also available.

Package Types (not to scale)

© 2003 Microchip Technology Inc.
6120 – Keycode storage

Suppose that the actual code is \textcolor{orange}{908437}

<table>
<thead>
<tr>
<th>EEPROM address</th>
<th>Stored word value</th>
<th>Keycode digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0x 0 0 9 0</td>
<td>9, 0</td>
</tr>
<tr>
<td>0x01</td>
<td>0x 0 0 8 4</td>
<td>8, 4</td>
</tr>
<tr>
<td>0x02</td>
<td>0x 0 0 3 7</td>
<td>3, 7</td>
</tr>
</tbody>
</table>

Keycode 2

<table>
<thead>
<tr>
<th>0x03</th>
<th>Start of next keycode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S&G 6120 (and Titan) Keypad Interior

Connector to lock

Battery connector
6120 – Wires from keypad

There are four wires from the keypad to the lock inside the safe:

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td>9v nominal</td>
</tr>
<tr>
<td>Ground</td>
<td>...</td>
</tr>
<tr>
<td>Keypress</td>
<td>5v when idle, less depending on key being pressed</td>
</tr>
<tr>
<td>Buzzer</td>
<td>Hi-Z when idle, pulled to ground for buzzer/LED</td>
</tr>
</tbody>
</table>
6120 – Design

• Keycodes stored in the clear in EEPROM
• MCU reads/writes EEPROM via 3-wire serial
 – “Microwire” interface (similar to SPI)
• Nice and slow
 – EEPROM to MCU ~1.5 kbit/s
 – Hundreds of milliseconds to read all data
• Lock reads all keycodes out of EEPROM on every attempt
6120 – Vulnerability

- Susceptible to power analysis
- Keycode bit values change amount of current consumed during EEPROM read-out
- Translate current changes into key values
- Enter key values on keypad
- Zero modification required
- Zero evidence of tampering left behind
 - Covert entry
6120 – Actual vs Power Zoomed

- Yellow: Actual data line between MCU and EEPROM
- Blue: Current into lock (2 μA per mV)
6120 – Annotated trace

• In this case, the keycode is “123456”
6120 – Microammeter

Current sense

Lock

10 Ω

9v Battery

Vcc

220 Ω

2.2 kΩ

20 dB amp

2.2 kΩ

21 dB amp

Oscilloscope
6120 – Demo

• Only basic equipment required to read code
 – Cheap oscilloscope
 – 1x probe
 – 10 Ω current-sense resistor
 – A few wires

• Don’t even need an amplifier!
 – Set scope to 500 uV/div
6120 – Notes

• Final bit in each word (i.e., LSB for every even keycode digit) is shifted lower in amplitude by about 20 μA regardless of value
• Reading first three words is enough for master keycode
• Remaining words are for additional keycodes
• Failure count written after all codes read out
6120 – Lesson 1

• Don’t store data in the clear
 – I mean, good lord...
6120 – Lesson 2

• Store critical data on-chip if possible
 – Harder to probe when initially investigating hardware
 – Faster access to data
 – Possibly smaller current swing
6120 – Lesson 3

• Use a fast serial bus
 – Simple power analysis is harder at higher speeds due to capacitive and inductive effects
 – Higher speeds could make attack inaccessible to the simple tools shown in the demo
Titan – Hardware

• Motor-driven acme screw to unblock bolt
• STM8S105K6 MCU runs at 2 MHz
• Keypad identical to one with S&G 6120
 – Resistor ladder
 – 9v alkaline battery
• Designed c.a. 2010, currently in production
• UL listed Type 1 high-security electronic lock
Titan – MCU

STM8S105C4/6 STM8S105K4/6 STM8S105S4/6
Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbyte Flash,
integrated EEPROM, 10-bit ADC, timers, UART, SPI, I2C

Features

Core
- 16 MHz advanced STMicrocontroller architecture
- 3-stage pipeline
- Extended instruction set

Memories
- Program memory: up to 32 Kbyte Flash; data retention 20 years at 55 °C after 10 kycle
- Data memory: up to 1 Kbyte true data EEPROM, endurance 300 kycles
- RAM: up to 2 Kbyte

Clock, reset and supply management
- 2.95 to 5.5 V operating voltage
- Flexible clock control: 4 master clock sources
- Low power crystal resonator oscillator
- External clock input
- Internal, user-programmable 16 MHz RC
- Internal low-power 128 KHz RC
- Clock security system with clock monitor
- Power management:
 - Low-power modes (wait, active, halt, halt)
 - Switch-off peripheral clocks individually
 - Permanently active, low-consumption power-on and power-down reset

Interrupt management
- Nested interrupt controller with 32 interrupts
- Up to 37 external interrupts on 8 vectors

Timers
- Advanced control timer: 16-bit, 4 CAPCOM channels, 3 complementary outputs, dead-time insertion and flexible synchronization

Communication interfaces
- UART with clock output for synchronous operation, SmartCard, I/OA, LIN master mode
- SPI interface up to 8 MHz
- I2C interface up to 400 kbit/s

Analog to digital converter (ADC)
- 10-bit, ±1 LSB ADC with up to 10 multiplexed channels, scan mode and analog watchdog

I/Os
- Up to 38 I/Os on a 48-pin package including
 - 18 high sink outputs
 - Highly robust I/O design, immune against current injection

Unique ID
- 96-bit unique key for each device

September 2015 DocID14717/ Rev 15 1/21
This is information on a product in full production.
Titan – Keypad emulation

• Keypad is resistor ladder hooked to voltage divider with a 20.0 kΩ source leg
 – e.g., “3” is 7.68 kΩ
• Simulate by sending the voltage that the divider would produce for a given key
 – e.g., 7.68 kΩ is 1.40 V
• Lock tolerates voltage error of ±0.10 V
• Debounce time ~30 ms
• Key interval ~120 ms
Titan – Timing attack

Digit wrong

Digit correct

Current

Time

t=0

Δ
Titan – Timing attack

• Power analysis for timing markers
 – Watch current drawn
• Current consumption jumps about 29.6 ms before keycode comparison completes
 – Use this rise as a reference point for timing
 – Reasonably stable time reference (jitter about ±10 μs)
• Keycode comparison takes about 200-300 μs
 – Depends on how many digits before mismatch
• At end of keycode comparison, current rises another 275 μA
 – Determine success/failure based on delay of this rise relative to reference point ≈29.6 ms earlier
 – 28 μs more delay per additional correct digit
Titan – Timing attack

• It’s like in the movies where they get one digit of the electronic lock’s code at a time – ...and the others are all changing rapidly.

Titan – Timing attack

• Noise
 – Jitter in ADC sampling times
 – Jitter in lock clock
 – Noise from the ADC itself
 – Noise of unknown origin in current consumption
 – Timing is very tight and amplitude difference between noise and signal is very small

• Oversample
 – Sample each time delay for each digit multiple times
 – 10x oversampling produces very reliable results
 – Adds significantly to recovery time
 – Will work with lower oversampling multiplier but less reliable

• Detect errors
 – If average times aren’t the expected amount longer (28 μs) during testing for the next digit, the previous digit’s value is probably wrong, so go back
 – If the time for a digit is way too early or too late, retry it
Titan – Timing attack

- Attack algorithm:
 - Try keycode starting with 0
 - Remaining five key digits don’t care
 - Watch for timing signs showing trial digit match/mismatch
 - If mismatch, try again with keycode starting with 1
 - Retry with increasingly high digit values (2, 3, 4, etc.) until “match” signature encountered (i.e., 28 \(\mu \)s longer delay)
 - Once first digit in keycode discovered, repeat for second, third, fourth, fifth digit
 - Sixth digit is a special case (brute force the 10 possibilities)
- Reduces worst-case attempt count from 1,000,000 to as few as 60
Titan – Timing attack

• Entire six-digit keypad sequence is captured before starting comparison
• Entered code is compared one digit at a time to the keycode stored in EEPROM
• If digit in entered keycode sequence doesn’t match, exits loop immediately
Titan – Lockout defeat

• Normally, 5 incorrect codes in a row leads to a 10-minute penalty lockout period
• Incorrect code count tracked in EEPROM
• One of two goals:
 – Prevent increment of failure counter, or:
 – Be able to reset failure counter
Titan – Lockout defeat

- Goal is to get V_{dd} below STM8 brownout voltage (2.7v) before the EEPROM write has completed
- If STM8 is running (not halted), and the battery voltage (V_{batt}) is 9.0v, roughly 2.7 ms elapse between floating V_{batt} and V_{dd} going below the STM8 brownout voltage
- Can be reduced to about 600 μs if V_{batt} starts at 3.5v and a key on keypad is held down (to increase current drain)
- To defeat the FW battery check, voltage must be reduced only *after* the STM8 has been woken up
Titan – EEPROM write timeline

How EEPROM in STM8 behaves after starting a byte-size write

Initial conditions:
- MCU $V_{dd} = 5\text{v}$
- MCU clock = 2 MHz
- Destination in EEPROM has existing data (i.e., not 0x00)

- EEPROM write begins $t=0$
- EEPROM erase of destination block begins $t\approx 0$
- Old data no longer readable; values now all return 0x00 $t=500\ \mu\text{s}$
- New data starts to be readable $t=2.5\ \text{ms}$
- Earliest time that MCU will consider write “complete” $t=3.0\ \text{ms}$
- Latest time that MCU will consider write “complete” $t=6.0\ \text{ms}$
Titan – Normal wrong code

- User finishes entering incorrect keycode
- Debounce complete; FW starts comparing entered keycode to stored keycode
- FW finds mismatch between entered keycode and stored keycode
- EEPROM write starts for “failed attempt” counter
- EEPROM block erased; failed-attempt count at 0x00
- EEPROM write of new non-zero failed attempt count complete
- “Wrong code” buzzer sounds
Titan – Lockout prevented

Debounce complete; FW starts comparing entered keycode to stored keycode

EEPROM write starts for “failed attempt” counter

 FW finds mismatch between entered keycode and stored keycode

EEPROM block erased; failed-attempt count at 0x00

Remove power from lock

Invalid-attempt count left at 0x00 (default EEPROM erased value)

MCU drops below minimum voltage before EEPROM write completes

User finishes entering incorrect keycode

Time

Remove power from lock
Titan – Lockout defeat

• Failure count stored in EEPROM
• EEPROM writes on STM8 are asynchronous
 – 500 μs to complete if EEPROM block already blank
 – 3 ms to complete if block has existing data
 – EEPROM writes become blocking if second write attempted before first finishes
• If we can cut power to the STM8 after it has revealed if a digit in the keycode is valid but before the failure has been recorded…
 – …we get as many attempts as we want!
Titan – Lockout defeat

• Either:
 – Kill power before the erase-write cycle starts, or
 – Kill power after the erase part of the cycle starts but before the new value is written

• Usually, erased values in EEPROM are 0xFF
 – Not in the STM8
 – In the STM8, EEPROM erased value is 0x00
 – Thus, erased value is a valid count: “zero failures”
Titan – Lockout defeat

• Measured EEPROM behavior when power cut
 – Block already erased
 • 500 µs (or less) to commit new data
 – Existing data in block
 • About 500 µs from start of cycle until old data no longer readable and bytes return 0x00
 • About 3 ms from start of cycle until new data becomes persistent
Support hardware – Custom PCB

- **Microammeter**
 - Low-side current sense for simplicity
 - Gain: 40 dB
 - Low-pass filter (second-order, $f_c=25$ kHz)

- **Power control**
 - Quickly apply or remove power to/from lock
 - Easily switch lock from 9 V supply to 3.5 V supply

- **Keypress simulator**
 - Use DAC and buffer to provide voltages that simulate keys being pressed on the keypad
Titan – Attack improvement

3.8 years → 15 minutes
Titan – Automated code recovery

• First five digits via timing attack
• Sixth digit through brute force (10 attempts)
 – Try keycode ending with each possible value
 – Check if buzzer line indicates error beep sequence
 • Two longish beeps (~0.5 s) = Wrong code
 • No beep = Correct code
 – Every fifth attempt, try a known-wrong keycode and kill the power during the invalid-attempt count
 EEPROM update to reset the count to 0x00
 – Go through all ten possibilities this way
Titan – Lesson 1

• Use constant-time comparisons
 – Would defend against timing attack
Titan – Lesson 2

• Assume failure first
 – Increment “failed attempt” counter before key comparison begins, not after
 – Then, clear “failed attempt” count only if the correct code was actually entered

• However...
 – Don’t make the erased value of the EEPROM/flash a valid value for the counter (i.e., treat 0x00 and/or 0xFF as invalid)
Titan – Lesson 3

• Run MCU clock faster
 – Less margin for timing attacks
 – Not a total solution, but could increase the difficulty of the attack
 – Be careful that a faster MCU clock doesn’t lead to emission of other stronger signals
Are there better locks? Yup!

- FF-L-2740B federal specification
 - GSA-approved locks
 - For securing material classified up to Top Secret
- Mandates significantly better design
 - Power source internal (no power analysis)
 - Resistance to various attacks for at least 20 man-hours
 - Approval revoked if design found vulnerable
Disclosure

• First attempt to contact S&G in February 2016
• Continued attempts through various channels over the following months
• Never got a useful response
References

[5] DoD Lock Program
http://www.navfac.navy.mil/navfac_worldwide/specialty_centers/exwc/products_and_services/capital_improvements/dod_lock.html

Also, a hat-tip to Dave (EEVblog) for nearly giving me a heart attack when I ran across this video of his and thought he beat me to the punch: https://www.youtube.com/watch?v=mdnHHNeesPE