The newest version of this slide deck and other related stuff can be found at

http://truckhacking.github.io/
Cheap Tools for Hacking Heavy Truck

By Haystack and Six Volts
What we are going to talk about

• Heavy Trucks: similarities and differences from cars

• R&D Problems: Trucks are expensive and the workaround

• Networking Protocols and Standards

• Adventures in truck hacking

• New Hardware Tools
Some Quick Notes

• We assume that you are familiar with basic vehicle networking concepts – e.g. there are computers in cars and they use a network

• We also assume you are familiar with the idea that you can do bad things once you are on those networks

• We are leaving out LOTS of details for time reasons
 • Check out our github

• Safety Disclaimer: Moving vehicles are dangerous. Do not fuzz a rental vehicle while driving, or do anything else stupid
Trucks vs. Cars

• “Trucks” are really any heavy vehicle including but not limited to Over-the-road Semis, Vocation Trucks, Fire Engines, Busses, some Armored Personnel Carriers, Ambulances, Armored cars, boats, diesel generators and agricultural equipment.
 • Exception: Diesel Pickup Trucks (these act more like cars)

• Nearly all heavy vehicles are Diesel engines.

• Different On-board Diagnostic and Networking Standards (J1939/J1708)
 • RP1210 governs workstation->adapter interface
Truck Economics

• Many components from different manufacturers are interchangeable (engine, brakes, etc)
 • Example: Navistar/International Truck can be purchased with either a Cummins or International/Navistar Engine (and Previously CAT also)
 • This means that products from different manufacturers have to be interoperable

• Many trucks operate in Fleets, typically as homogenous as possible

• The industry is incredibly data hungry, lots of data are stored and transmitted

• Data hungry industry + lots of miles = trucks spend (comparatively) more time connected to diagnostic computers
Trucks are EXPENSIVE

• A new Truck can cost over $100,000. Ouch.

• For the aspiring hacker - They are big, hard to store, hard to drive and expensive to operate.

• So we didn’t have one (and still don’t)...

• ...so how do we experiment? We built a thing.
Truck-In-A-Box, Version 1.0
Truck-In-A-Box (TIB)

• We bought an ECM (Engine Control Module) and built the electronics around it such that it functioned enough for analysis (Key-on, engine off)
 • The first one took 6+ months and cost over $10,000
 • However, that’s less than the cost of a truck

• Since then, we’ve built over a dozen of these full-size versions
• Later, we compressed the concept into small box with one or two PCBs that hook up to the ECM for each make/model
Truck-In-A-Box Concepts

- Recreate the Vehicle Networks, J1939 (CAN), J1708 (RS485-ish)
- Fake Passive sensor signals (usually just a set voltage or resistance)
- Fake Simple Active Signals (PWM for Accelerator Pedal)
- Generate Complex Analog Signals (Vehicle Speed)
Networking Protocols and Standards

- 2 main protocols: SAE J1939 and J1708
- J1708 is the old one (1985)
 - Based on 9600 baud UART
 - J1587 operates on top of it (transport layer)
- J1939 is the new one (?)
 - Physical & data link layers are 250K CAN
 - Addressing, transport, etc
- ISO15765 also used, but only for diagnostics comms
- (details in whitepaper)
J1708 basics

- 9600 baud serial
 - Can be read with a tty with a little work
- Messages are time delimited
- MID and PIDs
- Mostly older trucks will have only J1708
 - Some newer ones will have components using it
 - Also, gliders
- Data link escape for proprietary comms (PID 0xFE)
- Message fragmentation & reliable delivery (J1587)
J1939 Basics

- 250k CAN (500k in the near-ish future)
- Extended CAN ID broken into source, (maybe) destination, etc
- Address management, transport, message fragmentation
 - There’s a bajillion different J1939 standards
- Also a PGN or two reserved for proprietary comms
VDA basics

• Vehicle diagnostics adapters
 • Similar in purpose to OBD-II scan tools
 • Basically USB/Serial/Ethernet -> J1939/J1708 brid

• Governs functions exposed by vehicle diagnostic adapters (VDAs)

• Best VDAs for RE are Dearborn Group DPA
 • Robust logging facilities allow for easy dynamic analysis
 • For now; we want to write a RP1210 driver for…
Truck Hacking Tools: Truck Duck

• Cape for a BeagleBone
 • Hardware for CAN and J1708
 • 2 of each for potential filtering/modification purposes

• We also have a software stack for doing comms
 • J1939 kernel extensions (plus J1939-enabled Python build)
 • Homegrown J1708 implementation using AM335x PRU (it is ugly)
Adventures in Truck Hacking
Screwing with engine parameters

• Most engine parameter configuration is done over proprietary protocol extensions
• Pretty easy to reverse
 • Most OEM software is un-obfuscated .NET linked to some legacy C
• We super promised not to give too many specifics
• Demonstration of what is possible with TruckDuck
Engine parameter modification demo

• <demo goes here>
ECM impersonation

• Useful for reversing proprietary comms parameters
 • (details later)
Bad Crypto A Go Go

• (disclosed at con)
• More demos to come probably!
Heads up:

There is a ton of related material on our github including a white paper, schematics, assembly instructions, code, and embedded OS image.

truckhacking.github.io