Can You Trust Autonomous Vehicles: Contactless Attacks against Sensors of Self-driving Vehicle

Jianhao Liu 360 ADLAB SKY-GO Team
Chen Yan Zhejiang University
Wenyuan Xu Zhejiang University & University of South Carolina
Who Am I

Paddy Liu
Director of Qihoo360 ADLAB
SKY-GO Team Vehicle Cyber Security

Jianhao Liu is a senior security consultant at Qihoo 360 who focuses on the security of Internet of Things and Internet of Vehicles. He has reported a security vulnerability of Tesla Model S, led a security research on the remote control of a BYD car, and participated in the drafting of security standards among the automobile society. Being a security expert employed by various information security organizations and companies, he is well experienced in security service, security evaluation, and penetration test.
Who Am I

Chen Yan
Ph.D. Student
Ubiquitous System Security Laboratory (USSLAB)
Zhejiang University, China

His research focuses on the security and privacy of wireless communication and embedded systems, including automobile, analog sensors, and IoT devices.
Wenyuan Xu
Professor
Zhejiang University, China
University of South Carolina, United States

Her research interests include wireless security, network security, and IoT security. She is among the first to discover vulnerabilities of tire pressure monitor systems in modern automobiles and automatic meter reading systems.

Dr. Xu received the NSF Career Award in 2009. She has served on the technical program committees for several IEEE/ACM conferences on wireless networking and security, and she is an associated editor of EURASIP Journal on Information Security.
Table of Contents

• Autonomous Vehicles
• Basics of automated driving
• Hacking autonomous cars by sensors
• Attacking ultrasonic sensors
• Attacking MMW Radars
• Attacking cameras
• Discussion
What is Autonomous Vehicle?

Source: Michael Aeberhard, BMW Group Research and Technology
Levels of Driving Automation
Connected Automated Vehicles
How can cars be Autonomous?

Source: Michael Aeberhard, BMW Group Research and Technology
Hardware Architecture

Source: Michael Aeberhard, BMW Group Research and Technology
Vehicle Sensors

Radar
Works in low light & poor weather, but lower resolution.

LiDAR
Emits light, so darkness not an issue.
Some weather limitation.

Camera
Senses reflected light, limited when dark.
Sees colour, so can be used to read signs, signals, etc.

Ultrasound
Limited to proximity, low speed manoeuvres.

Source: Texas Instruments
Vehicle Controllers

- Electronic Brake
- Electric Power Steering
- Electronic Throttle
Autonomous System

- Maneuver Planning
- State Machine
- Trajectory Planning

Source: Michael Aeberhard, BMW Group Research and Technology
Advanced Driver Assistance System (ADAS)

Carmakers are facing seismic change. Suppliers which were largely kept under the hood are set to grow in influence as the industry adds more and more autonomous features to vehicles.

Advanced driver assistance systems

Detects close range objects to aid parking and avoid collision by using radio waves
Autoliv, Bosch, Continental, Delphi, Denso, Hella, TRW

Enables in-car night vision systems that can detect objects further away than traditional headlights helping to avoid collisions at night
Autoliv, Bosch, Denso

Integrates driver assistance functions; algorithms for every scenario
Carmakers, Tier-One suppliers, Google, Eletrotbit, Mobileye, IBM

Semiconductors underpin advanced electronic functionality
Renatas, Infineon, ST, TI, Freescale, NXP, Nvidia, Intel

Sources: Exane BNP Paribas; Autoliv; Morgan Stanley; FT research

*Lists of suppliers are not exhaustive

Image: Chereczkoff/Dreamstime

FT graphic
ADAS Application
Demo of Tesla Model S Autopilot

“Tesla’s Autopilot is a way to relieve drivers of the most boring and potentially dangerous aspects of road travel – but the driver is still responsible for, and ultimately in control of, the car……”

“Tesla announces new Autopilot feature”

Sources: www.teslamotors.com
How to Hack Sensors?

Sensors
- Cameras
- MMW Radars
- Ultrasonic Sensors

Autonomous System
- Representations and Fusion
- Road Model and Localization
- Situation Interpretation

Control

Display
Attacking Ultrasonic Sensors
On Tesla, Audi, Volkswagen, and Ford
Ultrasonic Sensors

Proximity sensor
• Parking assistance
• Parking space detection
• Self parking
• Tesla’s summon
Parking Assistance
How do ultrasonic sensors work?

• Piezoelectric Effect
• Emit ultrasound and receive echoes
• Measure the propagation time (Time of Flight)
• Calculate the distance $d = 0.5 \cdot t_e \cdot c$

t_e: propagation time of echoes
c: velocity of sound in air
Attacking ultrasonic sensors

Attacks:
• Jamming
• Spoofing
• Cancellation

Equipment:
• Arduino
• Ultrasonic transducer
Jamming Attack

Known performance defect

Basic Idea:

• Injecting ultrasonic noise to lower Signal to Noise Ratio (SNR)
• At resonant frequency (40 – 50 kHz)

Experiment target:

• 8 stand-alone ultrasonic sensor modules
• Tesla, Audi, Volkswagen, Ford
Jamming Attack - Setup

Car in figure:
Tesla Model S

A:
Ultrasonic Jammer
B:
3 ultrasonic sensors on the left front bumper
Jamming Attack – Demo on Tesla
Jamming Attack – Demo on Audi
Jamming Attack – Results

- On ultrasonic sensors
- On cars with parking assistance
- On Tesla Model S with self-parking and summon

![Tesla Normal](image1)
![Tesla Jammed](image2)
![Audi Normal](image3)
![Audi Jammed](image4)
Spoofing Attack

Basic Idea

• Transmitting ultrasonic pulses with similar pattern

• Timing matters!

Difficulty

• Only the first justifiable echo will be processed
Spoofing Attack – Demo on Tesla
Spoofing Attack – Demo on Volkswagen
Spoofing Attack - Results

- On ultrasonic sensors
- On cars with parking assistance

Tesla Normal Tesla Spoofed Audi Spoofed
Acoustic Quieting

• Cloaking
 • Sound absorbing materials

• Acoustic Cancellation
 • Cancel with sound of reverse phase
 • Minor phase and amplitude adjustment
Attacking Millimeter Wave Radars

On Tesla Model S
Millimeter Wave Radar

Short to long range sensing
- Adaptive Cruise Control (ACC)
- Collision Avoidance
- Blind Spot Detection

Construction of the Bosch RADAR sensors MRR and LRR3 (Source: Bosch)
How do MMW Radars work?

• Transmit and receive millimeter electromagnetic waves
• Measure the propagation time

• **Modulation**
 • Amplitude
 • Frequency (FMCW)
 • Phase

• **Doppler Effect**

• **Frequency Bands:**
 • 24 GHz
 • 76-77 GHz
Frequency Modulated Continuous Wave (FMCW)
Attacking MMW Radars & Setup

Attacks:
- Jamming
- Spoofing
- Relay

Equipment:
Signal analyzer (C)
Harmonic mixer (E)
Oscilloscope (B)
Signal generator (D)
Frequency multiplier (E)
Attacking MMW Radars - Signal Analysis

- Center frequency: 76.65 GHz
- Bandwidth: 450 MHz
- Modulation: FMCW

...
Attacks on MMW Radar

Jamming Attack
• Jam radars within the same frequency band, i.e., 76 - 77 GHz

Spoofing Attack
• Spoof the radar with similar RF signal

Relay Attack
• Relay the received signal
Attacking MMW Radars - Results

• Jamming: evaporate detected object
• Spoofing: tamper with object distance

(a) Drive gear. (b) Autopilot. (c) Jammed.
Attacking MMW Radars – Demo on Tesla
Attacking Cameras
On Mobileye, Point Grey, and Tesla Model S
Automotive Cameras

Computer vision
• Lane departure warning/keeping
• Traffic sign recognition
• Parking assistance
How do automotive cameras work?
Attacking Cameras - Setup

Attack:
- **Blinding**

Equipment:
- LED spot
- Laser
- Infrared LED spot
Attacking Cameras – Results with LED spot

• Part or total blinding

LED toward the board LED toward camera Tonal Distribution
Attacking Cameras – Results with Laser

• Part or **total** blinding
• **Permanent** damage

Fixed beam Wobbling beam Damage caused Damage is permanent
Discussion

• Attack feasibility
• Countermeasures
• Limitations & Future work
Conclusions and Takeaway messages

- **Realistic issues** of automotive sensor security
- **Big threat** to autonomous vehicles (present and future)
- Attacks on **ultrasonic sensors**
- Attacks on **MMW Radars**
- Attacks on **cameras**
- Attacks on **self-driving cars**