Ghost Telephonist

Impersonates You Through LTE CSFB

Yuwei ZHENG, Lin HUANG, Qing YANG, Haoqi SHAN, Jun LI

UnicornTeam, 360 Technology
July 30, 2017
Who We Are

• 360 Technology is a leading Internet security company in China. Our core products are anti-virus security software for PC and cellphones.

• UnicornTeam (https://unicorn.360.com/) was built in 2014. This is a group that focuses on the security issues in many kinds of wireless telecommunication systems.

• Highlighted works of UnicornTeam include:
 • Low-cost GPS spoofing research (DEFCON 23)
 • LTE redirection attack (DEFCON 24)
 • Attack on power line communication (BlackHat USA 2016)
Voice Solutions in LTE Network

- **VoLTE**
 - Voice over LTE, based on IP Multimedia Subsystem (IMS)
 - Final target of network evolution

- **CSFB**
 - Circuit Switched Fallback: switch from 4G to 3G or 2G when taking voice call

- **SV-LTE**
 - Simultaneous Voice and LTE
 - Higher price and rapid power consumption on terminal
Occasional Discovery

- When we used OsmocomBB as cellphone to access GSM network, we met a difficulty. During debugging the problem, we occasionally found a fake paging response can build the connection to network.
Normal 2G Call vs. CSFB

When we analyze the signaling flow of CSFB, we were surprised to find that there is no authentication step.

In normal 2G call, AKA does exist for every call.
Vulnerability in CSFB

- UE
- eNB
- MME
- BSC
- MSC

- Paging Request
- Paging Request
- Service Request
- NO Authentication
- Paging Response
- Setup
- Call Confirmed
- Alerting
- Connect
- Connect Acknowledge

- RRC Connection Release
- Extended Service Request
Vulnerability in CSFB

- The principle is like someone comes out from the door of LTE, then enters the door of GSM. He shouts, ‘I must be as quick as possible!’ Then he is permitted to enter, without the badge of GSM.
How can we exploit it?

• Basic idea
 • Because CSFB hasn’t authentication procedure, attackers can send Paging Response on 2G network, impersonating the victim, then hijack the call link.
Demo Video 1
Exploitation I – Random Hijack

The first idea we got, is to randomly attack the cellphones in CSFB status.
Attack Steps

• 1) Listen on PCH channel
• 2) Extract TMSI/IMSI in paging
• 3) Forging a paging response with the TMSI/IMSI
• 4) Check whether MSC accepts the paging response
Why Network Sends Paging on 2G

• Cellphone stays in 4G
 • Network sends paging message in 4G LTE PCH. But this paging message uses 4G’s S-TMSI, not 2G’s TMSI.
 • S-TMSI and TMSI are generated during **combined** attach or location update procedure.

• C118 really hear paging messages
 • In some cases, network sends paging message both on 4G and 2G.
 • So using the TMSI captured on 2G can response the CSFB call on 4G.
 • Usually the network sends TMSIs, but sometimes it sends IMSI.
Hijack Result

- C118 has no SIM card.
- C118 successfully hijacked one call from 139****920.
Attack Signaling Flow

The Ghost Telephonist gets control from here.
What can attacker do in further?

- If attacker answers the incoming call
 - The caller will recognize the callee’s voice is abnormal.

- What does attacker know now
 - Victim’s TMSI or IMSI
 - Caller’s phone number

- What can attacker do in further?
Exploitation II – Get Victim’s Phone Number

- During an ongoing call, sending ‘CM Service Request’ does not trigger authentication, and the network will directly response a ‘CM Service Accept’.

- So attacker can make a call to another in-hand phone to know the victim’s ISDN number.
• 1) Send ‘hold’
• 2) Send ‘CM Service Request’
Here are the records captured by Wireshark on the laptop that Osmocom is running on.

It confirmed that attackers can build a MO call connection with the network.
Targeted Persistent Attack

• Former discussion is about randomly attack. Here we introduce targeted persistent attack to hijack the victim’s link.

• Use TMSI
 • Once attacker knows one TMSI, he can persistently send Paging Response with this TMSI, no matter whether there is paging coming.

• Use IMSI
 • If attacker knows one victim’s IMSI and know where he is, the attacker can go to the same paging area, and continuously send paging response with the IMSI to hijack the victim’s link.

• Use ISDN number
 • If the attacker knows victim’s phone number, the attacker can firstly call the victim then capture the TMSI of the victim. After that, use TMSI to launch the attack.
Targeted Persistent Attack – Use TMSI

• Condition
 • Attacker knows victim’s TMSI

• Attack Steps
 • 1) Persistently sending Paging Response with this TMSI
 • 2) Once victim has a Paging procedure existing, attacker can quickly control the link.
Targeted Persistent Attack – Use IMSI

- **Condition**
 - Attacker knows victim’s IMSI

- **Attack Steps**
 1. Persistently sending Paging Response with this IMSI
 2. Once victim has a Paging procedure existing, attacker can control the link.

- **Disadvantage**
 - When network side receives Paging Response with IMSI, it has to find out the corresponding TMSI, so this method will increase the link building latency then consequently results in low ratio of successful attack.
Targeted Persistent Attack – Use phone number

• Condition
 • Attacker knows victim’s ISDN number

• Attack Steps
 • 1) Make a call to victim with an anonymous cellphone, to trigger a CSFB; Use one C118 to sniff TMSI
 • 2) Use another C118 to continuously send Paging Response with the TMSI and use anonymous cellphone to make second call to trigger CSFB again.
 • 3) Hijack and hold the victim’s link.
Demo Video 2
Advanced Exploitation – Attack Internet Account

• Login with verification SMS
 • Some applications permits login with cellphone number + verification SMS. Don’t require inputting password.

• Reset login password with verification SMS
 • A lot of Internet application accounts use verification SMS to reset the login password. Attacker can use the cellphone number to start a password reset procedure then hijack the verification SMS.
Advanced Exploitation – Attack Internet Account

1. Get phone number
2. Reset password request with phone number
3. Receive authentication SMS
4. Reset password according to SMS
Advanced Exploitation – Attack Internet Account

- C118 Log shows it received the SMS sent from Facebook to the victim
Advanced Exploitation – Attack Internet Account

- We investigated the password reset routine of many popular websites and applications, including global and Chinese ones, for example SNS website, payment website, and IM App etc.

<table>
<thead>
<tr>
<th>Website/App</th>
<th>SMS sending direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>Internet → cellphone</td>
</tr>
<tr>
<td>Google account</td>
<td>Internet → cellphone</td>
</tr>
<tr>
<td>WhatsApp</td>
<td>Internet → cellphone</td>
</tr>
<tr>
<td>Alipay (Chinese PayPal)</td>
<td>Internet → cellphone</td>
</tr>
<tr>
<td>WeChat (Chinese WhatsApp)</td>
<td>Cellphone → Internet</td>
</tr>
<tr>
<td>DiDi (Chinese Uber)</td>
<td>Internet → cellphone</td>
</tr>
<tr>
<td>Sina Weibo (Chinese Twitter)</td>
<td>Cellphone → Internet</td>
</tr>
</tbody>
</table>
Constraints

- Telephonist and the victim should be in the same paging area (several base stations’ coverage)
- The attack is feasible only when 2G network is in use and uses A5/1 or A5/0 encryption.

- Telephonist attack doesn’t need to access SS7 core network.
- Telephonist attack doesn’t need fake base station.
- The victim keeps online in 4G network and is not aware of the attack.
Different Behaviors from Different Terminals

- Different behaviors
 - We found some cellphones are easily hijacked but some are not.

<table>
<thead>
<tr>
<th>Victim Cellphone</th>
<th>Chipset</th>
<th>Chipset Vendor</th>
<th>Fake Call</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaomi Mi4c</td>
<td>msm8992</td>
<td>Qualcomm</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Nubia Z9 max</td>
<td>msm8994</td>
<td>Qualcomm</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>iPhone 5s</td>
<td>mdm9615m</td>
<td>Qualcomm</td>
<td>✓*</td>
<td>Jamming is needed to cut off the connection between victim cellphones and the network.</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>mdm9625m</td>
<td>Qualcomm</td>
<td>✓*</td>
<td></td>
</tr>
<tr>
<td>iPhone 6s</td>
<td>mdm9635m</td>
<td>Qualcomm</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Qiku</td>
<td>mt6753</td>
<td>MTK</td>
<td>✓*</td>
<td></td>
</tr>
<tr>
<td>Huawei P9</td>
<td>kirin960</td>
<td>Hisilicon</td>
<td>✓*</td>
<td></td>
</tr>
</tbody>
</table>

[*] in this table means jamming is needed in the attack.
Failure Analysis

• What ‘successful hijack’ means
 • After the attacker sends Paging Response, he receives the call. This means a successful hijack.

• Whether can hold the link
 • When the attacker receives the call, the call may be interrupted after a short time.
 • The reason is: the victim cellphone didn’t receive the call and it wants to ‘Fast Return’ back to 4G, so it will launch a Location Area Update procedure in 2G. This LAU results in the break of attacker’s link.
Fast Return Case 1 – Mi4C Cellphone, Qualcomm Chipset

<table>
<thead>
<tr>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCCH / Paging</td>
<td>-</td>
</tr>
<tr>
<td>LTE NAS EMM Plain OTA outgoing Message</td>
<td>-</td>
</tr>
<tr>
<td>UL_CCCH / RRCConnectionRequest</td>
<td>-</td>
</tr>
<tr>
<td>DL_CCCH / RRCConnectionSetup</td>
<td>-</td>
</tr>
<tr>
<td>UL_CCCH / RRCConnectionSetupComplete</td>
<td>-</td>
</tr>
<tr>
<td>DL_CCCH / securityModeCommand</td>
<td>-</td>
</tr>
<tr>
<td>UL_CCCH / SecurityModeComplete</td>
<td>-</td>
</tr>
<tr>
<td>DL_CCCH / RRCConnectionReconfiguration</td>
<td>-</td>
</tr>
<tr>
<td>UL_CCCH / RRCConnectionReconfigurationComplete</td>
<td>-</td>
</tr>
<tr>
<td>DL_DCCH / RRCConnectionRelease</td>
<td>-</td>
</tr>
</tbody>
</table>

Paging Response failure

Location Update not completed
Fast Return Case 2 – Qiku Cellphone, MTK Chipset

- Paging Response failure
- Location Update completed
Jamming on the Victim

• Break victim’s LAU
 • If the attacker sends jamming signal to the victim, this will break the link between victim and network, so that the attacker can keep holding the fake link.
 • This will increase the success ratio of the attack.
 • Disadvantage is the victim may sense the attack.
Countermeasures

• To operators
 • Improve the CSFB authentication procedure. The additional latency is acceptable.
 • Speed up VoLTE service deployment

• To Internet service provider
 • Be careful that the PSTN authentication is not safe. NIST guidance suggests not to use PSTN in two-factor authentication.
 • The password reset procedure should be improved by additional personal information check.
What’s CVD Program?

- CVD, Coordinated Vulnerability Disclosure Programme
- ‘Disclosures to GSMA must focus on open standards based technologies which are not proprietary to a specific vendor but that are used across, or have significant impact on, the mobile industry (e.g. including but not limited to protocols specified by IETF, ITU, ISO, ETSI, 3GPP, GSMA etc.)’

Good platform for reporting standard based vulnerability.
GSMA CVD Program

- UnicornTeam received the FIRST acknowledgement on the Mobile Security Research Hall of Fame.

- GSMA transferred the vulnerability information to every operators.

- Now related operators are fixing or already fixed this vulnerability.

Mobile Security Research Hall of Fame

Welcome to the GSMA Mobile Security Research Hall of Fame.
The GSMA’s Mobile Security Research Hall of Fame lists security vulnerability finders that have made contributions to increasing the security of the mobile industry by submitting disclosures to the GSMA or its members. It is the primary mechanism for the GSMA to recognise and acknowledge the positive impact the finder has had on the mobile industry by following the GSMA’s CVD process.

The Hall of Fame also facilitates the nomination and recognition of other finders that may have made significant discoveries of vulnerabilities to individual GSMA member companies.

Entry to the Mobile Security Research Hall of Fame is purely optional and is at the discretion of the finder, the GSMA and/or the nominating GSMA member.

On behalf of the mobile industry, we would like to thank the following people for making a responsible disclosure to us and recognise their contribution to increasing the security of the mobile industry:

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Organisation</th>
<th>Link</th>
</tr>
</thead>
</table>
Thank You ~