Man in the NFC

Build a NFC proxy tool from sketch

Haoqi Shan @ UnicornTeam
Agenda

- Who we are
- NFC & ISO14443A
- Competitions
- Yet another wheel?
- What is UniProxy?
- Master and Slave
- Issues in development
- Thanks, Q&A
Who we are

• **Unicorn team**
 • Internal security research team of Qihoo 360, founded in 2014
 • Focus on wireless/hardware hacking and defense
 • Security research division and hardware development division
 • Serial wireless researches published in Defcon/BlackHat
 • Low-cost GPS spoofing, Defcon 23
 • LTE redirection attack, Defcon 24
 • Attack on powerline communication, BlackHat USA 2016
 • ‘Ghost Telephonist’, Defcon 25/BlackHat USA 2017
 • Serial hacking tools developed
 • HackID/HackID Pro/SafeRFID/HackNFC, etc
 • https://unicorn.360.com
NFC & ISO14443A

• NFC
 • 13.56MHz
 • Low-cost
 • Not requires power
 • Well developed and deployed

• ISO14443A
 • Widely usage
 • Supports many applications
 • Security/Passport/BankCard
What we aim

- Credit card
 - QuickPass – Unipay (*)
- Starbucks POS machine
- XX: “I thought this question has been solved like a thousand times”
- More like a hacker
The way we used to hack

- Targeting protocols
 - Proxmark III (The Best Hardware way)
- Targeting data
 - NFCProxy
 - NFCGate
Why not?

- Proxmark III
 - Supports many protocols
 - Powerful
 - However, can’t hack credit card or we are all rich now

- NFCGate/NFCProxy
 - Based on Android
 - Modified firmware to relay NFC data
 - Monitor transmitted data
 - Rely on Wi-Fi
 - However, too much delay to complete whole payment procedure
Yet another wheel

- Inspired by mentioned brilliant hacking tool
- Faster (ms level)
- Lager ranger (50m, even more)
- Pure hardware solution (PN7462AU)
- Highly customization
- Completely self-designed and modify everything we need
What's UniProxy

- PN7462AU based NFC relay/proxy device
- Support ISO14443A protocol
- Targeting QuickPass(Unipay) credit cards
- Reader emulator, card emulator
- Point to Point wireless data transmission
- Easy to adapt to ISO 14443B/15693
Core of UniProxy

• Why PN7462AU?
 • NXP chip
 • 20 MHz Cortex-M0 core
 • Read/Write, Card Emulation & Peer-to-Peer Modes
 • Transmitter current up to 250 mA
 • Full MIFARE family support

• Architecture
 • Reader/Card Emulator
 • NRF24L01 wireless transmitter
 • Power supply
 • Antenna
Master (Back)

NFC Antenna

Lithium Battery
Process of Master (1)

Start → Init → No

RF-field

14443

→ Yes

Handshake

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

phOsal_Init();

/* Perform Platform Init */

status = phPlatform_Init(&sPlatform, bHalBufferTx,
CHECK_STATUS(status);
if(status != PH_ERR_SUCCESS) break;

/* Initialize Reader Library PAL/AL Components */

status = phApp_RdLibInit();
CHECK_STATUS(status);
if(status != PH_ERR_SUCCESS) break;

status = phpalI14443p4mC_SetConfig(
&spalI14443p4mC,
PHPAL_I14443P4MC_CONFIG_MODE,
RD_LIB_MODE_ISO);
if(status != PH_ERR_SUCCESS) break;
Process of Master (2)

- Communicate with card
- 14443A handshake and get parameters
 - Send parameters to card emulator
 - Receive response before timeout
 - Start block transmission
 - End

```c
/* Retrieve 14443-4A protocol parameter */
status = phpall14443p4a_GetProtocolParams(
pDataParams->pPal14443p4aDataParams,
&bCidEnabled,
&bCid,
&bNadSupported,
&bFwi,
&bFsd1,
&bFsci);
CHECK_STATUS(status);

/* Set 14443-4 protocol parameter */
status = phpall14443p4_SetProtocol(
pDataParams->pPal14443p4aDataParams,
PH_OFF,
bCid,
PH_OFF,
PH_OFF,
bFwi,
bFsd1,
bFsci);
CHECK_STATUS(status);
```
Process of Master (3)

1. Start block transmission
2. Wait response from card emulator before timeout
3. Forward data to real card, wait for real card response
 - Get response before timeout
 - Notify card emulator, communication is ended
 - I-Block data
5. Forward to card emulator
6. Process

Code snippet:
```c
void send(uint8_t *buff, uint16_t length)
{
    uint8_t count, i, length_last_packet;
    if (length <= MAX_SINGLE_PACKET_LENGTH)
    {
        #if 1
        packetbuff_send[0] = (uint8_t)length + 1;
        packetbuff_send[1] = CHAINING_NOT;
        memcpy(packetbuff_send + 2, buff, length);
        send_basic(packetbuff_send, length + 2);
        #endif
    }
```

Man in the NFC
Slave

NFC Antenna

Core

Power

→ 24 LoI

NFC Test U1.1

BoeTEAM
Process of Slave (1)

Start → init → Receive 14443

- No
- Yes

- Params from host
- Response success command
Process of Slave (2)

- Start interaction with reader emulator
- Init card emulator with received parameters
- Reader nearby
- Start interaction with received parameters
- Handshake with real reader
- Start block transmission

```c
switch(packetbuff_receive[1])
{
    case TYPE_BASIC:
        //uart_send(((uint8_t *)buffContext[0].pdwBuffAddr), buffContext[0].dwData);
        //debugPrint(((uint8_t *)buffContext[0].pdwBuffAddr), buffContext[0].dwData);
        //0x11 0x01 0x00  
        //uart_send(rsp_to_basicpara_rf, 5);//response to basicpara
        printf("type_basic\n");
        send(rsp_to_basicpara_rf,5);
        break;
    case TYPE_DATA:
        //phLED_SetStatus(LED_R);
        break;
}
```
Process of Slave (3)

- Start Block transmission
 - Received data
 - Yes
 - I-Block data
 - No
 - DESELECT command (S-Block)
 - Yes
 - Forward DESELECT to reader emulator and send DESELECT to real reader
 - No
 - Forward to real reader
 - No
 - Forward to reader emulator, send delay command after half waiting time
 - Yes
 - Received data from reader emulator
 - Yes
 - Forward to real reader
 - No
 - Flash error LED, self reset and send reset status to reader emulator
 - No
 - Finish
Issues in development

- First byte of UID
- Waiting/Wakeup time
- I/S/R – Block data
- ISO 14443A Part 4
- Power supply
- ...

Man in the NFC
Demo video
Summary

• What we learned
 • Read protocol document well
 • Better not developing without official support

• Further more
 • Improve transmission range up to 100 meters
 • Targeting security ID cards, HID iClass, Chinese ID
 • Self-compatibility
 • How?
References

- [NXP user guide](http://www.nxp.com/docs/en/user-guide/UM10883.pdf)
- [NFC Gate](https://github.com/nfcgate)
- [NFC Proxy](http://sourceforge.net/projects/nfcproxy)
- [ISO14443A](https://www.iso.org/standard/70172.html)
Thanks

- Hardware dev division of Unicorn Team, especially Jian Yuan, Chaoran Wang, and Yunding Jian
- Proxmark III
- NFCProxy
- NFCGate
Q&A

• Mail me: shanhaoqi@360.cn