Secure Tokin’ & Doobiekeys:
How to roll your own counterfeit hardware security devices

@securelyfitz, @r00tkillah
Michael (@00tkillah) has done hard-time in real-time. An old-school computer engineer by education, he spends his days championing product security for a large semiconductor company. Previously, he developed and tested embedded hardware and software, dicked around with strap-on boot roms, mobile apps, office suites, and written some secure software. On nights and weekends he hacks on electronics, writes Troopers CFPs, and contributes to the NSA Playset.

* Opinions expressed are solely my own and do not express the views or opinions of my employer.
whoami?

- Lectrical Nginear by education
- 10+ years of fun with hardware
 - silicon debug
 - security research
 - pen testing of CPUs
 - security training
- Applied Physical Attacks Training:
 - X86 Systems
 - Embedded Systems
 - Hardware Pentesting
- Own white shoes full of LEDs

SecurelyFitz
joefitz@securinghardware.com
Wouldn’t it be cool if...

We had a magical device that

- Encrypted things for us
- Authenticated things for us
- Authenticated us to others
- Solved all our insecurities
Wouldn’t it be cool if...

That magical device

- Fit in the palm of our hand
- Was easy to use
- Only cost a few bucks
Wouldn’t it be lame if...

This turned into a sales pitch for hardware security devices?
These are all improvements...
But they’re not magic.
Classic Hardware Threat Modeling

- Common attackers:
 - Evil maid
 - Supply chain
 - and End user
- Common vectors:
 - external ports
 - internal pins
 - counterfeit chips
 - intrusive techniques
Don’t attack the standard.
Attack the implementation.*
*Does not refer to the hardware implementation

Refers to the use cases and common scenarios
RSA Securid Token
First, what’s the real easiest way in?

“an extremely sophisticated cyber attack”
Hardware can be hard. Hardened Hardware is Harder

RSA SecurID hardware tokens are tamper resistant and designed to withstand extreme physical conditions including dramatic temperature variations, submersion in water and mechanical shock. An extended warranty protects RSA SecurID hardware tokens across the lifetime of the device.
Common Assumptions:

- The computer may be pwnd, but the token is separate
- The master key inside the chip is what the attacker’s after
- Getting that key will either be destructive or time consuming
A different Approach:

- The verification code is what we need to login.
- That needs to be output for the device to be functional.
- Can we sniff and relay that?
Surgery time
Surgery time
Dot toggles every second...
Toggles Every Second...
Bars ‘build’ every 10s
Pseudocode:

Is_LCD_On:
 Sample a pin 3x at 128Hz
 If 101 or 010, return true

Wait until Is_LCD_On(2nd to last bar)
Foreach 7seg segment:
 IsLCDOn(segment)
Delay 59 seconds
Repeat

But what do we do with the data?
LCD-BLE bridge

Insanely Low power - should last **years** leeching off the coin cell

Lots of GPIO

Plenty of power to read LCD pins and convert them to text
LCD-BLE bridge - Inspiration:
RSA Tokin’

We didn’t capture any crypto

We can listen to the verification code

We could broadcast the verification code over bluetooth

*We still do have to seal up the case without it looking too much like tampering... maybe lasers can help...
Doobikey - Get Some

Come get your FREE #YubiKey and Dashlane Premium subscription before they're gone!

Yubico @Yubico
Word on the street is @Dashlane is giving out free premium subscriptions with #YubiKeys at our booth #N4909 until 4 p.m. #RSAC #U2F

3:02 PM - 1 Mar 2016

LIKE 1

1 1
DoobieKey - Verify

Is this a legit Yubikey?

Post subject: Re: Second Yubikey looks way different - fake/replica or int

Tom2 wrote:

Do they have an imprint on the back “powered by Yubico”

Where did you shop the devices?

What serial number are those?
DoobieKey - Verify

Is this a legit Yubikey?

TEST YOUR YUBIKEY WITH OTP

Using the tabs below, select from three different login demos. Configure your credentials using the right-most tab. See each demo for more information. The first time you plug in your YubiKey you may have to wait a few seconds while your system detects the new hardware.

Single-factor authentication

This lets you demo the YubiKey for single-factor authentication.

1. Insert your YubiKey into a USB port
2. Click in the YubiKey field, and touch the YubiKey button

Single-factor (YubiKey only) authentication is not recommended for production use, as a lost or stolen YubiKey would suffice to authenticate as a user. See one of the two-factor authentication modes for a more secure solution.
DoobieKey - Customize

AES Key Upload
If you have re-configured your YubiKey to YubiCloud, you need to upload your new AES key to us. This lets you use your Yubikey on services that use the YubiCloud, Yubico’s validation server.

AES Key Upload – User Guide
DoobieKey - DIY

Simulate Yubikey with Arduino Leonardo

- **examples**: fix and clarify the READMEs
- **libraries**: another email fix
- **README.md**: fix and clarify the READMEs
DoobieKey - legitimize

Yup!

Congratulations!
You have been successfully authenticated with the YubiKey!
YubiKey serial: 5218577, identity: cccccf1bb

Click to view more information about the performed transaction

Parameters
- mode: one-factor
- key=ccccccf1bbbggedudd1ljkdgnlhtgburjihkn1ccek
- identity=ccccccf1bb
- serial=5218577

Authentication Output
- h=7MVglV9Mhlyk3Ci7JgBhFtdu=1-26177-03-08722-34:1228755
t=ccccccf1bbbggedudd1ljkdgnlhtgburjihkn1ccek
- nonce=e3968e6e52307f7116b30e8e525de49f13b
- s=25
- status=OK
DoobieKey - legitimize

Yup!
DoobieKey - legitimize

Yup!
Doobiekey - legitimize it!
Demo TIME
Doobiekey - Wait. What Just Happened?
Doobikey - With a Touch of Evil
So what?

We poked around at 5 ‘hardware security’ devices.

They are improvements and worth using.

But they aren’t magic.
So what?

Hardware doesn’t make things safer.

Hardware doesn’t make things harder.

Hardware DOES raise the barrier to entry... by a few dollars*

* a few dollars could actually be ∞% more expensive than software!
Every one of these devices improve security.

Use them.
Hardware threat models are LOTS more complicated than we give them credit for.
Software hacking is looking at the layers of abstraction, and finding a way through.

Hardware is just another layer of abstraction.
Software doesn’t run on hardware

It runs on layers of abstractions, all the way down to electrons and atoms
Still trust hardware implicitly?

What are you smoking?
Questions?
BACKUP!!!
Case Studies:

- RSA Tokin’
- Secure Boot
- Trusted Platform Module
- Yubikey
- The ‘Stateless’ Computer
Secure Boot - Booting

Blatantly Stolen Slide
Secure Boot - PKCS7 FTW

Blatantly Stolen Slide
Secure Boot - Signed by GeoTrust

YO DAWG, I HEARD YOU LIKED CERTIFICATES

SO I PUT THE CA SYSTEM IN YOU BOOTING
Secure Boot - Ubuntu

Blatantly Stolen Slide

Ubuntu* Implementation

Legend
- cert: Microsoft* UEFI CA certificate
- sig: Signature generated from Microsoft UEFI CA
- cert: Ubuntu* CA certificate
- sig: Signature generated from Ubuntu CA
Secure Boot - thisisfine.jpg

Matthew Garrett @mjg59 · 6 Jan 2015
Holy fucking shit seriously bugs.launchpad.net/ubuntu/+source...

Matthew Garrett @mjg59
Fucking criminal ineptitude

Matthew Garrett @mjg59 · 6 Jan 2015
Hey @ubuntu could you distribute the hashes of your shim so the rest of us can blacklist it
Secure Boot - Ubuntu

No verifiable kernel? No problem.
ExitBootServices()
Boot Anyway!
Secure Boot - Ubuntu

Wanna Boot Windows from GRUB?

Sure!

But - windows will NOT report that it has been securely booted
Secure Boot - Ubuntu

Wanna Boot Windows from GRUB ‘securely’?

Escape before ExitBootServices() is called.

How?
C’mon hackers... figure it out

3 image parsers written from scratch
Secure Boot - Ubuntu

Exploit a bug

Boot Bootkit

Bootkit loads windows
Secure Boot - Possible Future
Case Studies:

RSA Tokin'
Insecure Boot Spliff
Trusted Platform Module
Yubikey
The ‘Stateless’ Computer
What’s Trusted Platform Module

It does crypto stuff

It plugs into an LPC header

Many systems don’t ship with them

In human terms:
I need to get one to use bitlocker.
That’s all great.
Where do I get one?

Best Buy: Nope
Frys: Nope
Microcenter: Nope
Radio Shack: Yeah Right

If you want a hookup,
you have to find a sketchy dealer:
What’s this sketchy stuff i’m putting in my ‘puter?

LPC = ISA, 4x as fast, ¼ the pins

LPC can do DMA by pulling LDRQ#
I ♥ DMA

Wouldn’t it be great if someone already did all that work though?

Oh:

Wishbone LPC Host and Peripheral Bridge :: Overview

Details
Name: wb_lpc
Created: Mar 1, 2008
Updated: Jan 31, 2012
SVN Updated: Mar 10, 2009
SVN: Browse
Latest version: download
Statistics: View
I ♥ DMA

(Un)fortunately LDRQ# isn’t on the TPM header
Anyone Can Make a TPM*

It’s an open standard!

* Anyone with time to spare....
Trusted Platform Modules

People get them from sketchy sources

We *could* make a malicious one

No DMA, but we could make a leaky one

... maybe the next time I have patience or a nation-state backing me
Case Studies:

RSA Tokin’
Insecure Boot Spliff
Trusted Platform Module
Doobiekey
The ‘Stateless’ Computer
So perhaps we should rethink this whole hardware security thing...
Isolation works with software. Can it work with hardware?

State considered harmful

A proposal for a stateless laptop

Joanna Rutkowska

December 2015

The industry needs more brainstorming like this
State

BIOS
Firmware
EEPROM
NVRAM
Storage

Logic

Processor
Comms
I/O devices
This is the stuff we need to trust

State
- BIOS
- Firmware
- EEPROM
- NVRAM
- Storage

Logic
- Processor
- Comms
- I/O devices
Or even more simplified:

State --Logic

Bits Gates
(but not latches)
Or even more simplified:

State

Logic

SPI
EEPROM

Quad XOR
Gate
Or even more simplified:

State

Logic

Quad XOR Gate
Or even more simplified:
!!!Demo

- User sends plaintext
- SPI flash outputs key
- XOR does magic
- XOR’d cyphertext comes back to user
- Key bits loop around
- Repeat to decrypt
Can you verify this board?

- It’s only got one chip
- It was designed in the 60’s
- It’s only a 2 layer board
- It follows the XOR truth table properly
Can you verify this board?

- 14 pin DIP = many things
- Attiny84 fits the bill
- Need to bluewire it but that could be easily concealed
One of these things is not like the other

ATTINY84

74SN86
Faking a crypto ASIC... that’d be like... hard?

```c
void setup() {
  pinMode(5, OUTPUT);
  pinMode(6, INPUT);
  pinMode(7, INPUT);
}

void loop() {
  digitalWrite(5, digitalRead(7)^digitalRead(6));
}
```
Add a little state....

```c
#include "TimerOne.h"

int count = 0;

void setup() {
    pinMode(5, OUTPUT);
    pinMode(6, INPUT);
    pinMode(7, INPUT);

    Timer1.initialize(10); // initialize timer1, and set a 1khz clock
    Timer1.attachInterrupt(callback); // attaches callback() as a timer overflow interrupt
}

void loop() {
    digitalWrite(5, digitalRead(7) ^ digitalRead(6));
}

void callback() {
    EEPROM.write(count++, digitalRead(7));
}
```
False Advertizing!

But you’re supposed to be stateless!
You’re not supposed to store stuff!
We trusted you!

Wait...

wasn’t the whole point to *not have to* trust you?
We need to ‘Trust’ that this is stateless!

This is the stuff we need to trust

- BIOS
- Firmware
- EEPROM
- NVRAM
- Storage

Logic

- Processor
- Comms
- I/O devices

State
Case Studies:

- RSA Tokin’
- Insecure Boot Spliff
- Trusted Platform Module
- Doobiekey
- Altered State