An Attacker Looks At Docker
Approaching Multi-Container Applications

Wesley McGrew, Ph.D.
Director of Cyber Operations
HORNE Cyber
wesley.mcgrew@hornecyber.com @mcgrewsecurity
My Background

• Ph.D. Computer Science – Mississippi State University

• Academia
 • NSA CAE – Research, Education, Cyber Operations – MSU
 • Industrial Control Systems – Human-Machine Interfaces
 • Research & Education - Reverse Engineering & Malware Attribution

• Private
 • Director of Cyber Operations – HORNE Cyber
 • Computer Network Operations – CNO/CNE/CAN
 • Penetration testing, red teaming, application security
 • Operational security of testing engagements
Intentions

• ...to make a strong point about the relationship between an attacker’s skill set (and its development over time) vs. developer trends.
 • How to leverage what you already know
 • How to look at learning new technologies moving forward

• ...to provide a hacker experienced in exploitation and post-exploitation of networks of systems an exposure to applications composed of multiple containers
 • Exploring application internals

• ...with concrete Docker examples that leverage common practices (those in tutorials and intuitive/naïve usage)

• Inspiration concept/approach – HD Moore/Valsmith DEF CON 15 Tactical Exploitation

• Target audience – Attackers – Pentest, Red Team, CNE, CNO
Prior Art in Docker

- David Mortman, *Docker, Docker, Give Me the News, I Got a Bad Case of Securing you*, DEF CON 23
 - Underlying implementation and architecture
- Aaron Grattaflori, *Understanding and Hardening Linux Containers*, DEF CON 23
 - Kernel capabilities and advice for low-level security
- Docker documentation
 - Current state: a lack of “default on”
- Anthony Bettini, *Vulnerability Exploitation in Docker Containers*, Black Hat Europe 2015
 - Platform vulnerabilities
 - Targeting developers
Containerization & Docker

• Operating-system-level virtualization

• As an attacker, you’re almost certainly already aware of hardware/platform virtualization

• “Lighter” virtualization
 • Shared kernel
 • Multiple user-space
 • Filesystems
 • Libraries
 • Networks

• Docker – Images, Containers, high level composition into applications
 • Development
 • Deployment
Vulnerabilities & Layers of Abstraction

• Vulnerability Life Cycle
 • Doesn’t begin with discovery
 • Begins with a mistake

• *Everything* is an abstraction on top of physical properties of silicon

• Vulnerabilities are often a result of not understanding the layer(s) underneath you. Examples:
 • Web application vulnerabilities
 • Memory corruption and memory models

• ...or the “magic box” itself is broken
How Does a Hacker Keep Up?

• For your target, you don’t get to dictate the attack surface and underlying environment:
 • Language
 • Protocols
 • Platforms & Frameworks

• Two dimensions of gap in skills
 • Layers of abstraction
 • Specifics of technology (above)
Movement and Abstraction in Development

• From lowest to highest-level abstraction in web application development processes

- CGI Binaries
- Scripts
- Web-Specific Languages
- Frameworks
- Client-side + APIs
Next-Level Abstraction - Containerization
Mindset after you learn “Hello World”...

What can I build with these language constructs?

VS

How does “Hello World” work?
Movement and Abstraction for Hackers

• As an individual or small team you’ll approach and become familiar with an increasingly large number of software projects
 • …with more developers than an average CNE/CNA team

• Abstraction allows for more efficient development
 • Higher level technologies
 • Layers that “take care” of things for you
 • Lower-prerequisites for developers
 • Building block containers of mixed-technology software combined to make an application VS writing it in a monolithic style at a lower level

• What does this mean?
Movement and Abstraction for Developers vs. Hackers

- **Average Developer Work**
 - Good news: Becomes more lucrative over time

- **Typical Hacker Skill Development**
 - Natural – “How does X work?”
 - More ‘interesting’ bugs
 - Becomes more important
 - New bug classes

Less-than-good news: Needs purposeful development/training
Application to Attacking Application Internals

• Control over execution – opportunity to turn code against itself
 • Ex. – Malware analysis, ROP, Web API’s, CSRF
• Skillset – Penetration tester vs. Application security expert
 • External vs. internal application attack surface
• Penetration tests less-often involve new “creative” control over execution in monolithic binary applications
• Pentester training gap
 • Basic understanding of memory corruption – introductory and conceptual
 • Targeted on understanding tool use
 • Not sufficient to target modern applications/environments
 • vs. motivated, funded, organized attackers that have developed talent
A Useful Shift for Attackers

• Containerization allows for the design of applications that are composed of many independent single-purpose services.

• Democratizing post-exploitation manipulation and instrumentation
 • Observing and instrumenting program flow/data
 • Monolithic - Language/platform-specific knowledge/tools
 • Multi-container – Leveraging system/network-level post-exploitation and sniffing tools
Taking Advantage of Abstraction

• Organization-wide attack
 • Progression/change of compromising connected systems

• Multi-container applications have their own networks (possibly shared with other applications)
 • The test of an application becomes a microcosm of an organization-wide test
 • The same would happen with traditional virtualization, but it’ll be more common with containers: light and easy
Taking Advantage of Abstraction

• Exploitation of multi-container attack surface will begin with specific software in one container

• Post-initial-exploitation, access to an internal network of the *rest* of the containers, services, data, and protocols.

• Leveraged by the usual tools you already have familiarity with as a penetration tester.

• Analogous to hooking/examination/instrumentation of monolithic application
Docker as a Target Application Platform

• Monolithic container applications
 • Ease of deployment

• Multi-container applications

• Docker container networks
 • Default shared between containers
 • Configurations define which ports are “published” or shared to the outside world through the host.
 • Inside the network, containers may freely scan/connect/probe
Basic Exploration of Docker Container Applications

Quick connectivity check from one container to another, without the target container being explicitly configured to allow the connection
Implications

• Access through conventional exploits place attackers into an internal network with opportunity to pivot

• Familiar territory for attackers with system/network-level attack experience

• Limits: “Living off the land” is more challenging due to minimalistic images

• Learn to identify – You may not realize you’re inside of a Docker container network until you’ve exploited the external attack surface of it.
Exploitation and Post-Exploitation of a Multi-Container Application

Externally, with Kali & Metasploit:
Leveraging an older Joomla in the Docker Hub repositories
Pivoting to manipulation of multi-container voting application (from Docker tutorials)
Take-Aways

• Existing offense skills become useful at a lower relative position of abstraction relative to newer applications.
 • Developers are moving up, the new “low level” moves up
• Important to update yourself. Work “up” the stack as well.
 • New development practices such as multi-container application composition
 • Chase a trendy technology and look at the attack surface
• Containerization represents an opportunity for attackers to leverage existing network/system-level knowledge to explore the internals of applications that are composed of multiple containers.
 • Your existing skills are moving “down” the stack relative to where applications are being developed, and you can take advantage of it.
Discussion & Contact Information

Whitepaper available in conference materials, with more references and resources.

Wesley McGrew
Director of Cyber Operations
HORNE Cyber

wesley.mcgrew@hornecyber.com
@mcgrewnsecurity